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SEQUENTIAL QUADRATIC PROGRAMMING
ALGORITHMS

FOR OPTIMIZATION

Francisco Javier Prieto, Ph.D.
Stanford University, 1989

The problem considered in this dissertation is that of finding local min-

imizers for a function subject to general nonlinear inequality constraints,
when first and perhaps second derivatives are available. The methods stud-

ied belong to the class of sequential quadratic programming (SQP) algo-
rithms. In particular, the methods are based on the SQP algorithm embod-
iod in tho co'r' ".P;OL. which was developed at the Systems Optimization

Laboratory, Stanford University.
The goal of the dissertation is to develop SQP algorithms that allow

some flexibility in their design. Specifically, we are interested in introduc-
ing modifications that enable the algorithms to solve large-scale problems

efficiently. The following issues are considered in detail:

a The use of approximate solutions for the QP subproblem. Instead of
trying to obtain the search direction as a minimizer for the QP, the

solution process is terminated after a limited number of iterations.

Suitable termination criteria are defined that ensure convergence for an
algorithm that uses a quasi-Newton approximation for the full Hessian.
Theorems concerning the rate of convergence are also given.

e The use of approximations for the reduced Hessian in tne construction
of the QP subproblems. For many problems the reduced Hessian is

considerably smaller than the full Hessian. Consequently, there are
considerable practical benefits to be gained by orfly requiring an ap-

proximation to the reduced Hessian. Theorems are proved concerning
the convergence and rate of convergence for an algorithm that uses a

quasi-Newton approximation for the reduced Hessian when early ter-
mination of the QP subproblem is enforced.
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while having significant practical advantages, introduce, new ditr1icul-
ties: for example, the QP subproblems inay' be non convex. ard e'ven -i
miii uer for the subproblem is no longer guaranteed to yield a suit-
able search direction. It is shown how to construct suitable ,,varch
directions from approximate solutions to the QP subproblemn. Also.
theorems are proved for the conveigence and rate of convergence (it
these algorithmns.

Finally. some numerical results, obtained fromn a modification of the codeo
NPSOL. are presented.
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Preface

'he whole of science is nothing more than a
refinemwent of everyday thinking."

- Albert Einstfin

The last forty years have seen the introduction of numerous methods for
the solution of general nonlinear programs, and an expansion on their use
as satisfactory mathematical models for problems in many different fields
Of human activity. Examples of this use can be found in areas as diverse
as general equilibrium models in economic theory, structural optimization
in mechanical engineering. microeconomic models of the firm in business
administration, or optimal power flow in electrical engineering, attesting
both to the universality with which the structure of the mathematical model
can be recognized in Nature. and also to the existence of efficient methods
to obtain accurate and satisfactory answers to the problems considered.

Despite the fact that the widespread use of these models would not have
been possible without the existence of efficient solution algorithms, the opin-
ion is frequently expressed among researchers in the field that no general-
purpose algorithm available at this time combines all the desirable features,
and in particular, that the algorithms available are limited regarding either
the size or the difficulty of the problems they can solve.

The search for more reliable and faster algorithms constitutes the basic
motivation for the work presented in this dissertation. It would have been
presumptuous to have set as a goal the seaich for answers to all the nan-
swered questions left in this field: it has been our objective simply to explore
some aspects promising improvements for algorithms oriented towards the
solution of large-scale problems, on the understanding that it is in this area
where a more substantial amount of work seems left to be done. In any
event, it is our hope that the exploration of these topics, independent of the
setting in which they have been studied, may help to shed some light on
issues of general interest in the field.

The work presented in this dissertation would not have been possible
without the financial assistance provided by the Bank of Spain, and the
,arlier results, generous support and asistarice of the SOL algorithms group
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at Stanford University. Special mention is deserving of my advisor. Prof.
Walter Murray, who not only suggested the main ideas explored in this
dissertation and guided the course of the work to its present state, but
also found the time for many enlightening conversations on the most diverse
topics. Profs. Philip Gill and Michael Saunders were always willing to answer
mv many questions, and provided comments and suggestions from which
this work has benefited greatly: the example of their behavior (and that of
my advisor) has been one of my most important lessons during this period.
Although I had little opportunity to benefit from her presence, Dr. Margaret
%V,igh. ,vlfl ic fcndly remembered for her energy and dedication.

I am indebted to Prof. George B. Dantzig for his generous invitation
to visit this department during the summer of 1983: this work is one of
its consequences. It has been a privilege to have him in my dissertation
committee.

I would like to express my gratitude to the students working with the
SOL group, Samuel Elder, "ld, Anders Forsgren, Aeneas Marxen and Dulce
Picele6n. for providing a very pleasant and stimulating atmosphere. Spe-
cial thanks must be given to Anders Forsgren for his invaluable comments
and suggestions. I am also deeply grateful to Dr. Ulf Ringertz for his many
intelligent remarks, and for having provided the code for the structural op-
timization test problems.

Finally. I would like to thank the faculty members, staff and students at
the Department of Operations Research. who helped in many different ways
to make this a productive and enjoyable experience.

F.J. Prieto
Stanford, 1989
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Chapter 1

Introduction

1 1 I t lilt, lit,- i~il( Ic it( ,itibject of the repoIrt, and give 1 Moi iotivationi for the

ro uiitc l tk it addi (111 it brief siiiitiarY of prjltVoiis work lil t his area is p~resentedl.

1. 1. The pr oblemn aid algot-it hms

Vlhi ~ report i> colloliledl with IissuesIl It tho' field of tioililiielr programintg. which ill its tmost

viieral fortit is 11i;1 of fiuiditig ext retue poinits (mniinimizers or itnaximizers ) for a uttivatiate

funci oni subject to) certain contitons otn thle acceptable values for the variables.

[or the( puirpos o5 f t Iiis work. tie( problemt is assumtued to take a itiore rest rictedl form.

the effort is hitiit ed to thle (leterttminatlonl of local ext retie points. atnd tlieti(,nitins on the(

vdtlls of the variable." ate assuill to ho gixetilI aYi s~steti, of niotnlitnear ineqlualities. 'lie(

iioilitear prvrm coidleredl takes t 1iv following formi:

,-E i NLI

wheorv F : t' It' f anid r : i i

Tho miost rrhiat0le algorit hus for solvin, 'his probllemt mtakef ulse of thle lerivat ivxs Of the(

fuinctionls definling thll problemti whetn they exist. lii this siri.th alg(Iritliulis to be studied

try to exploit tite striictuire of the problemt fby coItiting local alppr(Ixmmatiotis from lie

(leriva iie iIniillon available. [Hits requlires addiitionai~l condhitionis on the( form of the(

proolui th lie ], l0riIsslttlllltoti Is the twice cotitliiiolis (litlerettalilitY (If the( funuctionus F

a1( tid Inh add~litin. soliv (Ither assuimiipt ions of a muore t edtno( I natutre are requtired; hs
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assuilipt joli will ho sp~ecitied later.

SQP algorithms

It is not kniownIlia general how to compute a so'it ion of the( nonlinear program NIA' in

at finii te numbn er o f iter-ations (obvious except ions being the cases of linear and quiiad ratic

programin ig) . ;d dso the algori thm is devoloped for its solttion are sequential in natuiire,

that is. anl itaiaite seq iience of points {Xklk=( is IS geerated, such) that tile limit Points Of

comiergeilt -dll1qleice aeSolutions for the problem.

Aaniollg Sequoaieiatl ilgorithmns a particular class, thitt of seqluential quadratic program-

ma ng (SQ(2l ) aIiatain.seenis to be relgarded aIs tie( buest choice for the solution of smiall.

dlense problema (see S tour L)toS"'51 or GI il et al. [GMNI SS" , for exam ple). The algorithbis

con1sidered blohnag to th1ais family of SQIP algorithmis. and the concern of ouir research is to

u(xt end Tite 1~~ 4 rbli for wich'l t hese algorithmns iiay be anl efficieiit choice.

The ii.x t parilgra plas are devoted to commenting uipoii some of the features of SQ P

algori t htin, anid thlei r relevanice to this work. We start by describing the most general formn

that such a ii loi ai maY take.

" Tbe al-gorihaa gevnerates a sequence of p~oints {Xk} converging to a solution.

" At each poilit . xk. a linearly constrained quadratic program (QP') approximatinag

locally thle N Ll p~rob~lem is generate(]. and a (direction Pk is Obtained from it.

* 1 ble nlext poa iii is definled to be either Xk + Pk- or the result of a lunesearch from11 Xk

aloiig Pk II i Such at Watx. t hat the valute of a certainm merit function is decreasedl

WVe arev mAo concerned With the studly of a general class of algorithmis, like the one

dlescri bed a bo ve, buit rat her withI thle dlefi nition and study of specific algori thmnis withini this

class. Alt bough thle piarticular forms of these algorithmns are presented in the following

chapters, vv point outf ilw-- that their most significant characteristics are the use of at

linmesear-h to (heteriri nex, poinrt fin thle sequence, and)( the construct ion of quad ratic

sl bp robleitis )f Iia

S.t. r(Xk) + VC(Xk )7 ? (



foi S >1I/ I icIat' I ii I/. whlom,1 1e I, 1/fortie are, lcrib1)ed as pill t oft t li de4fi it Itoll oft Ith (Iif Fe re IIt

Goal of the report

LxApiill Irfoni p)OVIot is earks, this report is seciallvI coliccriiet with mnodihicatroist

T114 wayl that Q P approxinliationis are coiist rutted anid solved. 'Ihe( irodificationis considered

ar' 'e ite'd T owardls ietiliiiig miore flexible SQlP algorli urs inl order to make them nimore

ut able for th lie )1111t oll of large-scale prlemslii. Specifically, we wish to relax thle uisual

a~suiim/t in fiat thle search ilirect icii is obtaineod as a riniinrizer o~f thle Q I' srnbprolilemi. arld

also to allow th li si, ol exact 5s2com/l derivatives, or to re/jiiire oilY all approximaniat 01 to tit(e

eimlced llessialv Fl'iallv. it niaY be piossible to take advanit rge of tlie jim-reasedl flexibility

to nim/rove, the poerformine of SQP met liouls eveni on smiall denise p/rob/lem.

Incomplete QP solution

''llhrloiut mw develop algorit i is thlat obtain tite search irectionl for a qIrladrati Sit[su-

prol/lem li i a limited num11ber of iteratins, which oftenii Ii pratice is sigiihfcaiily smaller

han tbe nuniber required for the complirat ioni of a iii irizer fort- re QlP sitlyrohilem: tihe

search direct ion olbt a ied in thiis fo/rm/ will be referred to as a i Mcorn plet e Q P sollit ion. Ii

general, lie alg-ori th moi , from it slrig poit sisfvim' ni ti id oiiiiist

first stationarY point, aidI tite search direc(tioni is torisiticted fromi thle iriforrinatiorii kniowni

Mi that /oitt

Th'le Q P sul b/lrohlenil. geieratedl inl tie( algorit hills (level(/fid so far have been) iorniallv

otbtajiled by 1Illig qia etii approximrat orus to thle fuill oi- tie( redticed Ifessiam: we shall

lso,( conisidler I lie ///oiiuf' rlsii Ill lie at He'ssiall' itlie' (efirritioni of Ilk

Qu1asi- N/wi onl a l/lruxiiniat ios genierate matrices that are( positive de(fiite.( anid at the(

uur't inieI allow tie( cuniuhit i//illiniuh11ers of iel app~roximiating matrices to b~e conitrolled. Ini

tris way, at convex suh/l/rolln is olitainied. anld if it is feasible, its solritioi exists and is

ihim/rpe. Illi outust . t lirse, of exact hlessians leads to noni-convex sniilprollnis; moreover.

lk ilY nlow be sIinglarl. Onl tlie oilier hanid, it will be seeni that Ire uise of lie exact

hlu>.~iahi leu / ,tiyligr conlvergenlce resilt s urrid anl Imroitvedl rate //f coiiv#igeniev.



1.. The problem and algorithms

Convergence assumptions

The convergence of the algorithms in this family normally requires additional conditions on

the form of the problem. An aim that underlies all the work presented in this report is to

try to develop algorithms whose convergence proofs make use of a reasonably weak set of

assumptions. The ones that can be most frequently found in the literature are:

" existence and continuity of second derivatives for the objective and constraint func-

tions;

" full-rank. Jacobians at solutions of the problem;

" bounded (above and below) eigenvalues for the approximations to the Hessian of the

Lagrangian function;

" strict complementarity at solutions of the problem;

" existence of a feasible point for each subproblem;

* compactness of the feasible region, or of the region where the iterates lie.

The search direction

Together with these "regularity" assumptions on the form of the problem, it is necessary to

specify the form of the direction of movement obtained from the QP subproblem, and that

of the multiplier estimates. In the literature, the usual choices have been:

" the direction of movement is obtained as the exact solution of the QP subproblem,

coiits u Lcd z., a convex program;

" the multiplier estimates to be used are either the QP multipliers at the last minimizer

obtained, or the least-squares multipliers at the current point.

Details about these choices are given in the next section.

Defining a solution

In the previous paragraphs several references have been made to solutions of the NLP

problem. The following remarks try to clarify what is understood by a solution.
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Local solutions can be characterized in ternis of what are known as the Karush-Kuhn-

Tucker (KRT'i conditloris (see for example Fiacco and Mc( orinick ["M('68] or Gill et a/.

L(.NIW\\ l]). g;iven M lerins of the first and second derivatives of tlihe Lagrangian function

for tlie proleh,m. The coditions come iii different forms, and in particular there are sets

of necessarv coilditions, and sets of sufficient conditions, but there is no practical necessary

al siiflicieit characterization of this form for the general case. Given that the previous

al orithms obtain points that satisfy the necessary conditions on the first and second deriva-

tives. it is not possible to guarantee that the points obtained correspond to solutions of the

1p robl) , i. Unfless additional assumptions are salisfied.

Also, given that 11o convexity assumptioi is made on the functions deiiing tie prolblem,

no a priori relat ionship can be established between local solutions and global solutions: t his

iniiies that th, algorithms to be presented will not iormally be able to determine whether

the solutiori, oblailnld are global solutions.

The following terils will be used to define what sohltioi points the algorit hinis are able

to find.

" S'tatioryrj po iot. A feasible point .r such that

"(,) Vc(x)TA* AiGc(x) = 0 i = 1 .... in

for some multiplier vector A* E )".

" lirst-ord( r AI[ I point. A stationary point J" such that A* > 0.

" Scconid-ord( r I 'T point. A first-order KKT point xr such that, if A denotes the rows

of the Jacobian Vc(.r) corresponding to the constraints having positive multipliers at

.1**
V AE ,'.,| vrjL ( x , A)?, > 0,

where the l.agrangian function L is defined as

L(r, A) - F(x ) - Ac(x).

aid do1)-l./ . A) lols lie ltssian of the Iagranian function, when the (partial)

derivativos are taken only with respect to the variable .r.

lI the case when analytical second derivatives are unknown or directions of negative

curvaturo arv not computed, the algorithms to b, presentlod only guarantee that a solution
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is a first-order I\ poiit. When exact Hessians are known and directions of negative

curvature are determined and used, the solntion obtained by the algorithm will be a second-

order K] point.

1.2. Historical background

his section presents a brief history of the evolution of SQP algorithms. Surveys for this

area can be found in [GMWSl]. (Po831 or fGNISW'8 ,] for example.

The origins

Ihe earliest reference found to met hods of this family is Wilson's doctoral dissertation

\\'i (3]. I is algorithm, formulated for the special case of convex problems, solved an

inequa]itv Colisl rai ned quadratic subproblem in each iteration, formulated using the exact

lhessian of the Lagrangiani function, and obtained the next iterate as xk + Pk (no linesearch
was perforniod ).

In general. a iiet hod of this form will not be globally convergent unless some precautions

are taken in ac(-ptiiig tie next step. Murray [Mu69] suggested a similar algorithm, but now

a linesearch wa.s )erformed on the (2 merit function, to guarantee global convergence. Also,

quasi-Newton a)proximations to the Hessian of the Lagrangian function could be used in

the generation of the subproblem, relaxing the requirement of convexity for the problem.

SQP algorithms became popular through the work of Biggs [Big72], Ilan [1Jan76] and

Powell [PoT8 (in the literature SQP methods are sometimes referrcd to as Wilson-Ilan-

Powell algorithms). Biggs proposed an algorithm similar to the one in [Mu69], with the

difference that the quadratic subproblem had only equality constraints, and a term for the

irnIltiplier estimate had been added to the constraints.

The algorithm proposed by lan solved an inequality constrained QP subproblem, where

the Hessian was given by a quasi-Newton approximation to the Hessian of the Lagrangian

function, although it require(d the assumption that the Ilessian was positive definite on the

whole space. Also. the "exact" (or ('1) penalty function

P'(x.p) -- (.r) + p Z, ,ax (0, -c,(X))

was used as a inorit firction within the liinsearch.
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Iowell proposed it intho(1 similar to tli(, one in [11al76], but ie was able to show that

the algi)rithlll coliverged slipitelinearly even whenl Ihe Ilessian of tie Lagrangian function

\a.,s indefinite at th(' solltiOll.

III the Itext >:,ragraphs we, focus on the evolution of tilie different ele'ments of an SQP

al, orithti: th, Ilieit funct ion, second-ordor informal ion, the i imultiplier estinate, etc.

The merit function

Ili all ionlitearlv conistrained optimization algorithms th(, choice of tihe merit function is of

reat importance, not only because of its role in ei)iforcing global con vergnce, but also in

order to etismire a satisfactory perfornlance of tie algorithm.

Ile It (exact p(,ia~t5v) merit function has becone a very popular choice after being

proposed by li ri [Ilani7() and Powell [1o78] for SQIP algorithms. Its advaltage is that

for large eotilil vallie's of ho penalty parameter, minimizers for the NIA' plohivi are

ilicolistrained minimizers for the exact penalty function. On tie other hand, the function

is nlot smoothI, and inl partiiilar it is not differentiable at the solution of the problem.

Another oit ion is the iu, of tie augnented Lagramigian

l,.(.,A.p) ,'(.r) -- ATc(x) + p'(.r)Tc(X)

as tli( Ilierit t uti<tion. It Iliust be noted that this funlion ilncludes an additional set of

varables, tit(, Lagralige multiplier estimates A. lit order to compute the correct value of the

original varibal des .r. it is necessary to obtain tile correct value for the multiplier estimate.

In fact, tihis merit function has the property that, if flie o)timal nultillier vector is used,

there exists a finite value of the parameter p such that tit(, solution of tile prol)lem is an

uncorstrained lniti izer of the merit functioll.

A proprty of this nierit function is that it is sinlooth. In extensive tests, tile e('rforlllance

of algoritihlls llsilig this merit fuinction has been superior t) that of miet hods using tit(, exact

peiialty fi nutt io. OIt te (It her hand. any algorithm that makes tise of this merit function

nee(ds to tiike l(ial care( of tlie way tit(, multipliers are estiniated: a bad estiniate may

inhibit c(livergll(e or dlegradll lie performance of tit(, tlelt hod. The theoretical analysis of

thies algorithi, i.-, als(io mniore coliplex because tie additional variables A lteed to bi, taken

into accotliit. 'I I, us(, of this merit functioln il al SQPI framiework was first suggested by

Wright [WriTiJ] a itu Schit tkowski [SchM I1.
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The search directioi'

An important eletient of the algorit inis presented in this report is the use of an incomplete

solution of the Q11 subproblem as tlihe search direction for the merit function.

In the large-scale cas,, the number of QP steps required to obtain a minimizer for the

QP subprohlems. pauiicularly in the early iterations, may be very high. Regardless of the

inefficiency this ma lilrodl ce, practical implementations must impose a strict upper limit

on the nuimiber of QP step". There is therefore a definite interest in defining an incomplete

solution whose computation requires a strictly limited number of steps.

Although the e have beent proposals in tlie literature to terminate the solution process for

the Q1) subpioblems earlk, the great majority of SQP algorithms, including those mentioned

earlier in thi., s-,.ctiou, define the search direction from a minimizer for the QP subproblem.

An appro ,ch solving Q) subproblems inexactly is described in Dembo and Tulowitzki

[DT 5], wher f"jr a generic SQP alg'-rith1m an early termination rule is given in terms of

the norm of the reduced gradient for tle subproblem. This rule gives a search direction Pk

satisfying the condition

j/, - 1k JP = (

where P* denotes the mi nimizer for the kth QP subproblem.

We follow a ditferent approach, presenting an early termination rule that is constructive

in nature, an that has a guaranteed bound on the effort necessary to satisfy it.

The multiplier estimate

An important aspect in the efficient implementation of methods using merit functions based

on the Lagranuian function is how to select the approximation to the Lagrange multipliers

A in each iteration.

Most SQP algorithms (for example, [[an 76] or [Po78]) define A as ir, the QP multiplier

obtained at the solution of the previous subproblern: Ak+i - 7rk, where

VF(xk) + IkPk = VC(Xk) 7rk,

+ c(xk)) =.

irk > 0.

Tn fortit nat ely, in this case tlie change in the Lagrangian function is no longer nonotonic

whetever t iit multiplier estimate is ltp(lated.
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An alternative is to use the least-squares multiplier estimate AL,

AL(Xk) = (VC(xk)VC(Xk)'IVC(Xk)Vf'(k)

and to treat it as a function of x, rather than as an additional variable, simplifying the

theoretical analysis of the algorithm. This idea appears to have been first introduced by

Fletcher [Fle70], where it was used to construct an augmented Lagrangian merit function

in order to solve an equality-constrained problem. For problem NLP with only equality

constraints, Powell and Yuan [PY86] have considered the use of an augmented Lagrangian

merit function that estimates the multipliers by AL, and they have shown several global and

local convergence properties for this function.

Another option, compatible with the use of the QP multipliers from the previous iter-

ation, is to treat the multiplier estimate as an additional set of variables in the linesearch.

This idea was suggested by Tapia [Tap77] for equality constrained optimization, and Schit-

tkowski [Sch81] introduced it in an SQP framework. A proof that the sequence {Xk} con-

verges to a first-order KKT point and the multiplier estimates converge to A* is given in

Gill et a]. [GMSW86b).

Trust-region methods

An alternative to the use of a linesearch on a merit function to ensure global convergence

is the trust-region approach, where the size of the step is limited by imposing a constraint

on the norm of the solution for the QP subproblem.

In this framework, Fletcher [Fle85] proposed an algorithm that solved a quadratic sub-

problem minimizing the Lagrangian function for the QP subproblem, subject to a bound

on the I . norni of the solution.

Another application of this idea is given by Celis, Dennis and Tapia [CDT85] for the case

when only equality constraints are present. Their algorithm is related to the conventional

trust-region approach in unconstrained optimization, in the sense that they impose a bound

on the value of the 11-112 norm of the solution. Also, the linearized constraints are replaced

by a second bound on the norm of their violation.

The algorithms we consider make use of a linesearch, and trust-region constraints are

not specifically included in the QP subproblems.
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Second derivative information

Several alternatives have been considered in the literature for the construction of thE matrix

Ilk containing the second-order information for the quadratic subproblem.

It was inentione(l earlier that in the first SQP algorithm proposed, Hk was taken to be

the Hessian of the Lagrangian function at the current iterate. When the NLP problem is

convex, there are no special difficulties in solving the subproblem.

If the convexity assumption is not satisfied, as is often the case in practice, the sub-

problem can become much more difficult to solve. To avoid this risk, and to extend the

algorithm to cases where analytic derivatives may not be available, the most frequent choice

of Ilk has been the use of a positive definite quasi-Newton approximation to the full ies-

sian of the Lagrangian function. In this way, a convex subproblem is still obtained, and

the subprobhlems cati be solved efficiently. A detailed discussion of quasi-Newton updates

can be found, for example, in Dennis and Mor6 [DM77] and Dennis and Schnabel [DS83].

Also. a description of different approaches to the implementation of this idea in an SQP

framework is presented in Gurwitz [Gur87].

A difficulty with this scheme is that the Hessian of the Lagrangian function is rarely

positive definite on the whole space (even at a solution). It is likely therefore that the use

of quasi-Newton updates such as the BF"GS method, will lead to indefinite approximations.

Scvciai alternatives have been proposed to compensate for this problem. Powell [Po78]

presented a modification of BFGS for which positive definiteness was preserved and two-step

superlinear convergence was achieved. Another possibility is to approximate the Hessian of

the augmented Lagrangian function, where the penalty parameter has been selected large

enough so that the Hessian can be kept positive definite; see Biggs [Big72], Tapia [Tap77]

and Han (1an77].

Following the development of efficient QP solvers for indefinite problems, some updating

methods have recently been proposed for which only the positive definiteness of ZTHkZk

is preserved. where Zk denotes a basis for the null space of the Jacobian of the active con-

straints at Xk. The motivation for these approaches is that at the solution ZTV.,L(x,A)Z

will nornmally be positive definite. For this type of update, see for example Fenyes [Fen87].

Another a ternative along a similar line is to try to approximate only the reduced Hessian

ZkIlkZk. This scheme has the advantage of requiring the storage of a matrix that in many

cases is significantly smaller than the full Hessian. Reduced Hessian updating methods have

been proposed among others by Murray and Wright [MW78], Coleman and Conn [CC84],
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Noced al and( 0Overton [N051 and Gil bert [01I87]. A st udy of the convergence prop~erties of

tle.-;( methd fiol r the case when oiilv equality constraints are present is given in Byrd and

Noced alf N

1.3. Conitenits of subsequenlt chapters

Ch apt er 2 d1esc ri bes thle fori iof the general algori thm i, whose variants will be stutdied in

Ch lapters 1, 5 aind 6. 'Flie, coniIons onl thle search dIirect ion and the multiplier estimate

are presentedl, thle assumiinons usedl for thle convergence proofs are introduced, and several

results bearing oin tilie reaisona hleniess (4 ihe p~revious coindit ions are presented arid proved.

Ch apt er 3 p re'ellt s all resulIts t Iiat aire coiimon to thle coiivergen ce proofs for tile different

algori thm is. ( iveji that thle algorithm lisStutdied are defi ned to share mainy elemnt.,t, (tilie mnerit,

function, thle det erin atioin of tihe search direction, teriiination conditions for tilie Iiniesearch

etc.)~. it Iias been considered conivenienit to group in this chapter the results commnon to all

conivergeince p~roof,,.

Chapter -l studl~ies the coinvergence p~rop~erties of an algorithm that uses a quasi-Newton

alpproxination to the full Hlessian, and a search (direction constructed from information

available at a stationary poinit of the QlP subproblem. It is shown that such art algorithm

is globally convergent (that is. it converges to a solution from any initial point), and that

it converges supherlinearly uinder mild assumnptions.

(Chapter 5 considers the variant of thle algorithm when a quasi- Newton approximation

to thle reduced Hessian is uisedl. again only utilizing information at a stationary point of the

QP subproblemu. TJhiis al1gorithlin is also shown to be globally convergent, but it converges

two-step superfinearlv to the solution.

Chapter G3 presenlts andh studies an algorithm that uses exact second derivatives in the

construction of the QP subproblem. Again, thle search direct ion is obtained from the infor-

miation at a st at ionary lpoinut of tilie quadratic suhbprob~lemi. It is shown that thle algorithmi

is globally convergent, aiid that it coniverges qtiadlratically to thle sol it ion. unuder imiild as-

su ri pt i (iis.

C'hapter 7 presents inuiierical results obtained frouiu the implemeunutation of the algorit hm

ittrodu tced iii Ch'lapt er I1. F'inally, somev remarks are inucl uded concerning the p~roperties of

all thle p roviou,, algorit linms.



Chapter 2

The Algorithm

('hapters -1, 5 awd 6 present and study the convergence properties of three variants of an

SQP algorithin. These methods differ in the way the second-order information for the

Q|' su problem (the matrix Hk defined in the previous chapter) is generated, but they

share several conimion features: the merit function is the same, the search direction is

generated accordilg to similar principles and the linesearch procedure is analogous for the

three methods.

This chapter describes a framework algorithm, composed of the common features men-

tioned earlier. Consequently, the following chapters only need to specify details that differ-

entiate the method presented from the others.

In addition, we enumerate the general assumptions that are needed in the convergence

proofs for the differ'ent methods. Again, it is left to the corresponding chapters to complete

the list with any additional assumptions required for each individual method presented.

Finally, as the framework algorithm specifies conditions on the way the search direction is

to be computed, and on the acceptable forms that the Lagrange multiplier estimates may

take, this chapter ends with a justification for the reasonableness of these conditions.

2.1. Background

The basis for th, algorithms presented in this report is the algorithm NPSQP, as imple-

mented in the code NPSOL [GMSW86a] developed at the Systems Optimization Labora-

tory, Stanford University. For a theoretical discussion of some properties of this algorithm,

12
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[( MSw 6b] should be conisulted; in fact, this reference has been the main source of infor-

mation for the work described in the following chapters.

Since its inception, NPSOL has beeni shown to be a very eflicient code for the solution of

small general nonlinear problems. It provides a good starting point to propose and analyze

modifications to SQtP algorithins to make them suitable for the solution of large nonlinear

problems.

One characteristic of NPSQP that poses difficulties in the solution of large problems is

the ineed to compu te the minimizer for the quadratic subproblem. The number of iterations

required to solve the QP subproblem will in general grow with the size of the problem.

This increase in Q P iterations raises two issues: iii the first place, it is questionable that in

order to preserve overall efficiency, the effort required to compute a minimizer for the QP

subproblemu can be compensated by a sufficiently small n uin- ' of subproblems to be solved.

Also. any practical Q1 algorithrn has to impose a hiiit on the maximum number of QI)

iterations allowed, arid so there will exist cases ii which the exact solution is not obtained;

tle qutestion thele is ]low does this affect tire convergence properties of the algoriIthi. Both

issues can be addressed if we are able to obtain a satisfactory termination criterion for a QP

algorith i that is guaranteed to be achieved in a ninoderate" number of iterations. In tiis

sense, a "satisfactory" criterion will be one that is efficient in the sense that the number of

nonlinear iterations is iot adversely affected.

If the sollitin process is terminated early. tie search direction for the outer iteration (tie

step on the original variables) is defined as the "tot al" step taken in tlihe QP subproblem

up to that point. lIthr characteristics of tire point at which the ttrmiination takes place

clearly depend i the specific strategy used to solve the QI) subproblem. NPISQIP. and

the algorith i - described later on, ise an active-set strategy to obtain the solution startinrg

from a feasible point; this strategy dictates the kind of termination conditions that can be

imposed. As mentionied earlier, the conditions imposed should have the following properties:

they should Jimit the number of QIP iterations needed to obtain the search direction to a

rea sonably snall value, and the conditions should be easy to implement.

Terminating tlie Q P algorithin prior to obtaining a solution impacts the SQPI algorithin

in a number of critical ways. Not only the s'arch direction obtailed is now of "lowvr quality '"

than bk ,-e, but also tie QP mitllipliers available will in general not be positive, and it is

necessary to give some rules on whiat. constitutes an acceptable multiplier estimate when

forming the search direction ii tie multiplier space. The consequences of terminating tie
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QI' soliutioni early are therefore far reach ing.

Another potential dlifficulty. when large problems are conisidered is the use of a quasi-

Newton approximiationi to the full Hessian of the Lagrangian function, as it may become

too large to store in dense format, unless some scheme to generate sparse quasi-Newton

approxiiiiat loll's is iisedl.

One( possile alternative, used for example in the code MINOS, as described in [NMS82],

is to work with ani approximation to the reduced Hessian. For many, large-scale problems

he s'ize of the reduiced Hessian is relatively small, and an approximation to it may therefore

be stored inl deice formtal.

A not her jilternlat i e is to use exact second derivaives. fin t his case the sparsi ty, of the

sli ild den vativc, should1( alleviate the problemi of storin;g and handling lie Q P hfessianl

a id even foi ie( s imall-scalv case, Iminprovement s tin the rate of convergence and total com-

pu~tational \ irk canti be expected.

V ii fort iiinaIelv. this latter approach p~resenits some dIrawbacks. In the first place. sub[-

problem-,. miay no loniger be convex, arid an indefinite QP solver must be used. Also, a

liii 'ie ilii imi ier for tie( su bproblem May iiot exist, and it is necessary' to give condlit ions

ui al e wl Ii a specific miii izer will he an accept able ,(,arch direction. Onl this regard.

it 'hln i b4e jloit 'd t hat while the defini tion of a sat isfactorv termi nation criterion for the

i~n ~i Net ;'i agunt li is is only vofe aspect in the iniprovement of their efficiency, for the

Ne~wt on -t vpf a igi in111 thI iitle termi nation criterion is dijrect ly related to its convergence prop-

"rt Ws. lItii lv.gyen that the convergence proofs, rely heavily onl the similarity, of the

convert'ence properties for the sequences {xk - x } and {Pk }, If the reduced Hlessian is close

to i itfg'iaritlY it is possible that no minimizer will be acceptable, and alternat ive t eriinat ion

criteria iieed to In' specified.

I h(e prevvd inig topics are on r main thlemes. The defi nit ion of the search (direct ion will

hev iut red hi ed inl thIiis chapter, after the general formi of the algori thin, to he coinpleted inl

foilowing chlaph ''.". has been speciC w'dI The approximation to the second-derivat i e in for-

lnat iou wveilb l'iech algorithmn will bt indicated in the c~orresponding chapters. Thel( next

(.(t ioins h rv to provide thle framework for all subsequent results.

2.2. General formi of the algorithim

[his sect ion Introu ces the( prototype algorithm. Following the remarks mnade inI the pre-

violmi s vc tloII. thliis a lgori inH is dIirect ly based onl NI)SQIP. The1 prototype algorit Iiin obt alius



2. ( mi mol formii of it (!l(/fithml 1.)

lI seawitrc 1 11(( tli I tjoII f ro 1 anI i i i coti i i)Iete o olitIIoi I for a Q 1) siui1)1) r(J1)le iI I of It lie fo r i i i indicit ted

Ill t lle p: evionis chapter. 'I'lli, iterates are determined bY perforin ig a Ii iiescarcli oil thle

1. a. 0. .~ ) F( )1 )Act (1 - + c .(X) - .s) '(cws (2 2.1

were > 0 are slack variabiles. aaid tlu'. scalar p is kiiowni as, the( penaltY paraiiieter. 'I'lie

liiieseavi i I- erformied ili the spaice of thli variables x. A aiid . aild the corresp)oin~ig

..earcli direct io)il aire denloted by P, c and~ 4'.

I'le , nhos ()(. p. or soniet iinie, jist o( o ). are used to (lenot e

<:,(,) ~ -p)- cK=a ±,.(*+o, oq./)).

I llait is, t h Iln'l fii unc eol it a ilc iiitoli ofl the stepleiit hi. The derivative of 0 wNit i ('11(spct

I'lie 6llhiv.Iiii iiiuveiiiiiis \will be used iii the rest of the report.

allt lioug h iel l;1.t two sviii hols. Ak- anid rk.. will also b~e liseI %%t)Ill thle salle mleanling but

rest rict 'd to) tlie sit ()f active coiiist rai iits ;it thle givenl point. 'T'he teii act iv coora jot will

he use'd to desiollilte at roo-t raint that is satisfied exact ly at thev current point (c,(x) =0

ill Ilie iioiilini.ar pioblein. or a, 111 -c, iii tie quadratic siubprobleim), andl the set of all

coiii railnts a~ctive at at (iveni poinit will be referred to as thle (ictii( ,;(t at t Ke poi it.

Thli ec)'tive fiiiict onl for tilie Q P siibproblemi \A ill ble (lenotel I)Y tk(P).

Silliet iiiies. c. will deotel( t he funtion of oie variablet' C(o ) i.(P + "(d). IiniallY . sIll-

hiols of t helii Ilri .1",_ i idicteo fixed scalatrs relted to piropertiles of t lIe problei.l or the

tillploeliI;Iei~t Pill ohf t lbe lg~orit 1i1ii. whlere, -ibc idei fies, thei specific scalair represented.

'The framnework algorithmr

lii'' algi nit hi i dtscri l'i below wvill lbe coiiimon to thle iiiethlid:. st iidied 'ii1t lie folhow~liig

rhialpt (r" 1in 1 lio 1'is halt I~ lat~ Iter will be (lefi itei as specific algorit l inis dIhat he. witbinl

il fr;ii.'wrk 'igri i'ii.1hu friuie~vrk ;dlgrrilim riu vd thlroi.lgh the folowviiig stepis:
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Start from poi it -r0 and an estimate for tile Lagrange multipliers A0 . Let If( be

an d pli,xilitmioii to the Hlessian of the Lagrangian function at x0, satisfying certain

[,n1WI, i,' alld lot Po > 0 be the initial value for the penalty parameter.

Aii) At each point xk., form the QI subproblem

T I 7'7kP+ pWkp

Slbject to 11kp > -Ck,

w lhe', Ilk douotes an approximation to tie Hessian of the Lagrangian function at

.1 I d;tIII a incomplete solition Pk satisfying certain conditions to be specified

',t~ltlpte a vector of niultipliers tIk satisfying a second set of conditions to be
pwidid. If Pk. = 0. set Ak= Ilk and terniiniate. Otherwise. define k = Ilk - Ak.

ii l u t . from {max (0, Ck if Pk- I =0
k 0 ,

"k aX (0. c. - = , otherwise.

Lindt p. uch that o'(0) (or p"(0) if a curvilinear search is used) is bounded away from

Z/,,, iv si ,, .ixl multiple of (iPk{ 2.

qk = AkPk + Ck - ;k. (2.2.2)

(iv) ('onplito t lie stlengt)I k as follows. If pk is used as a direction of descent, the

t errui iation conditions for the linesearch are as follows:

If

0(l) -0(0) < aTo'(0) (2.2.3)

,t j -- I. 0) iI,,rwise* filid an o k (0,1) such that

o(Vk)- '(0) < (7(k(O) ( 2 .2. .a)

'(N ) >_ 710'(0), (2.2.41t))

where ) " < <11 I

If 1/k is iiudlfiiite, a curvilinear sarch may have to be used. The definiltion of c will

h, sliit fly lmodified, a d11 th, new termination conditions are given in ('hapter 6.
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(N) Voii "lk-+l.

'vi) U'pdate ,J.k and Ak using

.rk I &kP
I ,k+t = k + O'k G

S k ,Sk (1k

and repeat tlihe previous steps until convergence is reached.

Jhis description of the algorithm still ieaves many details to he specified. The termi-

nation criteria for the incomplete solution of the QP subproblem and the conditions on

the multiplier approximation Ilk are discussed below. The specification of the form of the

approximation to the Hlessian of the Lagrangian function, Ilk, is left to the correspond-

ing chapters. Finally, for the case when indefinite lessian matrices are used in the QP

subproblem, the form of the modified search is given in Chapter 6.

The solution of the QP subproblem

As indicated in step (ii) of the algorithm, in each iteration the search direction is com-

puted as the incolmplete solution for the local quadratic programming approximation to the

problem, by moving to a stationary point of the QP subproblem and using the information

available at that point in the way indicated below. The subscript k corresponding to the

iteration number will be dropped in what follows.

(i) An initial feasible point pu for the QP subproblem is obtained.

Wheni an incomplete solution for the QP> subproblem is used to define the search

direction, the choice of p0 becomes critical. If Ilk is positive definite and the minimizer

for the QP ;s used to determine the search direction, then, given the uniqueIiess of Pk,

the choice of pu is irrelevant. If we determine the search directic-i from a stationary

point that is not a minimizer, the sequence of stationary points that we compute

depends directly on the value of p0. We wish to define the initial point in such a manner

that, at least in the )ositive definite case, all stationary points are satisfactory points

at which to terminate the solution process. Ihe condition that we need to impose on

1Pu is one t hat limit s the size of its nerni, and in particulai 1i1()JI will be required to be

small whenevor the points xt, are close to x".
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We start by defining vectors and r having components

s, =max(O,c i- pi),

J e- s, if lei - sil <ci- ,
ri

ci - s, otherwise;

where p denotes a multiplier estimate such that the following property holds:

ilXk - ill - 0 > lick - Skll - 0

when i is a stationary point for the NLP problem. From this definition, r has the

tollowing t)roperty:

1i1 < Hc - s11. (2.2.5)

The initial point Po should then satisfy:

* If J denotes the components of c corresponding to the active constraints at P0;

for some constant 3P. > 0,

lip0ll < OpIPVII (2.2.6)

e For some constant 3P,, > 0,

Ilpoll _ /3, ljlrll. (2.2.7)

It is shown later that these conditions are easily satisfied, given a reasonabic rule for

the selection of the initial QP active set. A stronger condition, but perhaps of a more

intuitive nature, would be to select lipoll -0.Ilc-llI, where c- denotes the vector of

negatiVe coImiponents of c (the norm of the infeasibilities at the current point). In this

case. we would be requiring 11poll to be -mall whenever we are close to a feasible point

(and htot necessarily just close to a stationary point). Its disadvantage is that near a

solution this ride could prevent the algorithm from having some desirable properties

(such a.s having one QP iteration per major iteration, for example).

(ii) A seqlienice of Newton steps is taken until a stationary point for the QP subproblem,

fi, is folind.

(iii) If the stationary point is a second-order KKT point, the search direction is defined as
J- E p.
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(iv) If tile stat loll ary point is not a second-order KKT point, cither tie QP multiplier

vector has some components that are negative, or the reduced Hessian (assuming

that exact second derivatives are used) has negative eigenvalues. In this case. an

additional step. f + (d, may need to be taken, where (t and d should satisfy the

conditions indicated below.

If the iiiiiltiplier vector has negative elements, the conditions on the step are:

C1. d is feasible with respect to tie active constrainlts. Ad ,> 6. ali(l its noril is

bounded above and below, that is. for sOie constalts ujj > 31,1 > 0 it holds

that ,, _ jdl > 3,1,,. It is assi lt.-u that 3,j _< 1. in order to siniplify the

ar ut'niieiits ill tie followin.f ciapters.

C2. The rate of de ent along ( is sufficiently large. If i+'( ') t'(/3+ 4d). it is required

that

1(o) = ( I g)' -. iax,/, (2.2.;)

for soin constant *JL > 0.

C3. The steplengthi (k is defined as the step to the i ininizer of the quadratic function

c ((), given by -v'(O)/(dIfld), if L, is convex and this step is feasible. Let n,

deniot e the stop to tile nearest inactive constraint. ani(l define

-dd if (I > 0, (2.2.9)

0
A1' otherwise.

ThIien
0t lli:nto ,o .... 0  

) , (2.2.10)

where (k,, > 0 is a .,pecified )oun( on the large;t accepttable step.

If the iultiplier vector is iioii-inegative and the re(hiiced lessian is indefinite, tile

conditions are:

C4. :A direction of negative curvatnre d for tlie reduced lhssian is coniputed sa1isfyi1Ig

11111 =  I, dIld _ A, I,,. .<d td .= J'0, K (d ,

wilvir Ami n indicates liw ;sniallest eigenivalue for tile reduced Hessian, and A

delloes tile .Jacol)ian corrvspolid(ing to th.he active set at ]).
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(A weaker condition that is sufficient for the convergence of these algorithms is

that for any sequence {dk}.

dTtIkdkk V - Arin, - 0

dTdk

hOI(1 S.)

C5. Let , be the step to the nearest constraint. The step a is defined as

0 = min(t,af).

Finally, for both cases we impose the following condition:

C6. It is a desirable property to avoid having search directions with very small norms,

unless the corresponding point is close to a solution. The following condition is

sufficient to ensure this property. Define

' = i(2.2.11)
ft otherwise,

for some constant 0,1p > 0. In what follows it will be required that/3 1p 1

It should he noted that in the case when Ilk is obtained from the exact second deriva-

tives, the previous rules are not sufficient for the determination of the search direction; the

complete set of rules will be presented in Chapter 6.

The multiplier estimates

Step (ii) of the algorithm requires not only a search direction pk, but also an estimate

/k for the Lagrange multipliers at the current point. The QP solution is terminated at a

stationary point. so a natural choice would be to use the QP multipliers as the estimate,

huIt iII general these iay not be the best possible choice, as they may be negative, or the

active set associated with the -search direction may not in some cases be the same as the

(41V for which tho iimitiplier was obtained. The following set of conditions on ytk i- sufficient

to isu re that the algorithms have the desired convergence properties.

CT. 'h'e estimates are niformly bounded in norii.
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C8.

JIM1 - A II = O( II11k1),

where A* denotes the multiplier vector associated with the solution point closest to

Xk.

C9. The rcGple?4mrtv condison i'IT(.4 kpk 4- rk) = 0 is sat'rPfd at :11 Itots

2.3. Assumptions and bounds

The algorithm will be applied to a problem satisfying the following general assumptions:

Al. Xk lies in a closed, bounded region S) C Rn, for a]l k.

A2. F, ci and their first and second derivatives are continuous and uniformly bounded in

norn on Q.

A3. The Jacobian corresponding to the active constraints at any limit point of the sequence

generated by the algorithm has full rank.

A4. The quadratic subproblems are always feasible; furthermore, there exists a subset

of linearly independent constraints corresponding to the violated constraints for the

NLP problem, such that its condition number is bounded and its least-norm solution

is feasible.

A5. Strict complementarity holds at all stationary points for the nonlinear program in Q.

A6. The reduced Hessian is non-singular at all solution points for the problem.

The bounds

From the previous assumptions, several quantities are uniformly bounded in the algorithm.

We introduce the notation that will be used throughout the following chapters for some of

these bounds. '1'hie first three bounds follow from assumption A2; the fourth follows from

A3.

lnmA is a boiund for the norm of the Jacobian: IlAkIl _ 1,,/A-

i].n-. is a bound for the norm of the constraint vector: ijckjj <_/.
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3nm9, is a bound for the norm of the gradient: IJgkl < 0,mg.

dn,,u is an upper bound for the norm of the multipliers corresponding to a minimizer for
the QP subproblem: Ilfikl- ! #,,u

2.4. Auxiliary results

This section presents a certain number of basic results, either justifying the conditions

introduced before, or establishing properties to be used in the following chapters.

Initial points for the QP subproblem

It is of interest to show that the condition on step (i) for the solution of the QP subproblem

can be satisfied. Ini fact, the role of assumption A4 is to guarantee that this condition can

be achieved. Condition (2.2.6) is satisfied if the Jacobians for the initial active sets have

bounded condition numbers. Condition (2.2.7) requires some additional justification.

From A4 it follows that there exist feasible points for the QP subproblem satisfying the

condition

for some positive constant Qcm.

Consider now the following relationship, which will be often used in the next chapters.

For any vector v defined as vi = min(ci,wi), where w is any other vector, it holds that

I -I< Ilv'll, since

if c 7 = 0 then c- <vii,
if c- > 0 then if vi =ci then c- Ivil,

if vi = wi then c- _ 1wil = Iv.

This implies

Ic- II _< Ilc - S11, I <11 I e - 4l1

and

Ilc-Ii < c - sll. (2.4.1)
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Multiplier estimates

The next results explore some implications of the conditions on the multipliers given in the

previous sections, and also present some examples of estimates satisfying these conditions.

A consequence of condition C7 and the form in which multipliers are updated is the

boundedness of the multipliers in the algorithm. This result is Lemma 4.2 in [GMSW86b].

Lemma 2.4.1. For all k > 1,

IAkll _< max I111A,0j<k-i

and hence IIAkI is &unded for all k.

Proof. By definition,

A0 = to

Ak+l = Ak + Ok(pk - Ak), k > 1. (2.4.2)

The proof is by induction. The result holds for A0 = ito because of the boundedness of

the multiplier estimate (condition C7). Assume that the lemma holds for Ak. From the

definition of Ak+l and norm inequalities, we have

IIAk+1lL (kIIlikII + (1- ak)IAkII.

Since 0 < a < 1, the inductive hypothesis gives

IIk+1l1 < max Ijmlj,-o<j:Sk

as required. I

Conditions C7-C9 are sufficiently general to be satisfied by most reasonable estimates,

as the next lemmas show. Nonetheless, some attention must be paid to the satisfaction of

condition C7, concerning the boundedness of the estimate, although that boundedness is

guaranteed asymptotically by assumption A3. In general, any reasonable scheme to limit

the norm of the inultirlier estimate will not affect condition C8.

An issue that. needs to be mentioned regarding condition C8 is the necessity to identify

the correct active set when Xk is close enough to x*. (Since the problem may have several

solution points, we use x* in this context to denote the solution closest to xk.) The next
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results assume that this is the case, but the formal proof for this property is given in

Chapters 4, .5 and 6. where it will be shown that, independently of C8, if jjxk - X*I1 is small

enough the correct active set must have been identified. Note that if i1xk - X*II is bounded

away froin zero, C8 will be satisfied automatically by any multiplier estimate.
The following candidates for the estimate will be shown to satisfy C8-C9, assuming

that the correct active set has been identified.

(i) The Q14 multipliers at stationary points found by the algorithm.

(ii) The least-squares multipliers at Xk.

(iii) The least-squares multipliers at xk + Pk-

For the following results, let {Xk} denote a convergent sequence such that xk - X*, 3

stationary point for problem NLP with multiplier vector A*. Also, we assume that IHkjII is

bounded, and that

IlPkI- = O(=ixk - x*11).

In Chapters 1. 5 and 6 it will be shown that this last result holds for the points obtained

by the algorithms considered there.

Lemma 2.4.2. Lt /ik denote the QP multipliers at a stationary point Pk of the QP sub-

p,.oble at k, having the same set of active constraints as x*. If IIPkII = O(Ilxk - X*1[),

111k - A* 11 = O(IlXk - X*11).

Proof. Froim the definition of ik,

Akitk = 'IkPk + 9k,

at d from lie corresponding Taylor series expansion,

./ 1k - ZII k,V 2 C(Xk)(X* - Xk) + O(Ilzk - X*112 ).

From th' definition of A* and the previous equation,

.,*'lk - A*) = 9k - g* + ltkPk + EZ'ik, V2c(xk)(x * - Xk) + O(llxk -X*12),
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and again using a Taylor series expansion for gk,

A*T Gi k - A* = |Vk(xk¢ - X* + Hkpk, + O(Ilxk _ X*112 )

where IWk denotes the Hessian of the Lagrangian function at xk, defined using fik as the

Lagrange multiplier estimate.

From assumptions A2 and A3 and the boundedness of Hk the desired result follows.
I

The following lemma presents the corresponding results for the least-squares multiplier

estimates, 1L.

Lemma 2.4.3. The least-squares multipliers at xk satisfy

II/k - A*Il = O(IjXk - X*1I)

and assuming Ixk + Pk - 11 = o(Ilxk - X*11), the least-squares multipliers at Xk + Pk satisfy

jjjIk - A*jI = o(IlXk - x*Il).

Proof. From AkA T = Akgk, A*T* = 9* and A, = A* + O(fxk - x*11) it follows that

A Z* -*T - O - = - + - 11) = O( - ),

and from the non-singularity of A*A*T we get

ik - A* = O(IlXk - *11)-

For the second case, under the same assumptions as before, if we denote by A',gk the

corresponding values obtained at Xk + Pk, using A' = A* + O(Ilx, + Pk - x*If) we have

A*A*T(#' - ,*) = A*(9k - 9*) + O(lxk + pk - X* 11) = O(lXk + P -- x* II),

and fron, the assumptions,

k- * -O(l~k + pk - *11) = o(IjX, -x*l),

completing the proof. I



Chapter 3

General Results

The previous chapter has introduced a framework algorithm to be used in the definition

of tihe three methods analyzed in the following chapters. The study of these algorithms

centers on the determination of their convergence properties, that is, the proof that they

are globally convergent, and the characterization of their asymptotic rates of convergence.

Given the many common features of the different algorithms, the arguments used to

show these results naturally follow the same general pattern and present a considerable

number of similar steps. This chapter introduces the general structure shared by the proofs

developed in the following chapters, and proves those results that apply to all algorithms,

because they arc independent of the way Hk is defined, the specific details in the determi-

nation of the search direction, etc. In this way, the actual convergence proofs given in the

next three chapters only need to establish those results that depend on the specific details

characterizing each one of the algorithms, and will make use of the general results in this

chapter for those aspects that they have in common.

The lemmas presented in the following sections leave many unjustified steps in the

argument of the proofs, corresponding to those results that are particular to each algorithm.

These steps are stated as pioperties, denoted by Px, where "x" is a digit, and they are

assiuined to hold for subsequent lemmas. The convergence proofs in Chapters 4, 5 and 6

prove that these properties hold for the different algorithms. For ease of reference, at the

end of the chalpter we include a list of all the properties introduced.

26
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3.1. Convergence properties

This section motivates the common structure shared by the convergence proofs in the fol-

lowing chapters, by presenting the questions these proofs will address. It is important to

remember that the results presented in this chapter do not try to answer the questions

posed below: they only introduce a number of basic results, to be used in Chapters .1, 5 and

6 to answer these questions.

All of our algorithms generate an infinite sequence {Xk}k'__ whose limit point is a solution

for the problem. In order to establish global convergence (i.e., independently of the initial

point selected, the algorithm finds a solution for the problem), we want to show that the limit

point of the sequence has certain desired properties. Notice that under assumption Al, the

sequence will always have convergent subsequences. Furthermore, from assumptions A3 and

A6 it is possible to show that the limit point is in fact unique. Proving global convergence

is then equivalent to proving that the limit point is a solution point. In what follows, we

denote the limit point )y X*, so that we have Xk - x*. The proofs in Chapters -1, 5 and 6

will start by examining the properties of x*.

In subsequent chapters we will also determine the rate of convergence of the sequence

{ 11k - X* 111 }. Specifically, we will provide answers to Oie following questions:

" What is the value of

him1 I1Xk+rn - X*11
k-,,, IIXk - X* 11

when both it = 1 and in = 1?

" If the previous answer is zero, is there a value of n with m = 1 for which the answer

is finite and strictly positive?

* If the answer to the first question is not zero, is there a value of in with n = I for

which the answer is zero?

To claraclerize the different answers to the previous questions, we say that

(i) the algorithin converges sup rlicarly (or onc-shp supcrlincarly) if

lint IlXk+l - X*11 = 0
k-x oI1Xk - X*11 -0
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(ii) the 'i I, iIihu converges to-stcp sulp rlil(O y if

hrn Itk+2 -X*1I 0;
k -c II~k - ill1

(iii) finally, tho ilgorithin converges quadratically if

0 < lina Llxk+I - X*11 <
k--,, ilk - X*IP '

A further question of interest is how the penalty parameter Pk behaves as k - oc. A

desirable property for Pk is that it remain bounded throughout the algorithm, and in this

chapter we intlnrouce some conditions that guarantee this property.

3.2. Structure of the proofs

II this section we present and motivate the steps that we will take to obtain the answers

to the previ( II questions. These steps also attempt to justify the results proved in this

cAa ptier. .) t),, they can more easily be put into the framework of the convergence proofs

presenled in (Chialptrs .1, 5 and 6. Some of the results will be shown to hold in Chapters 4,

5 and 6. while some others are proved in this chapter; we try to indicate for each one of the

statements where tie corresponding proof can be found.

(i) A first observation is that the sequence {xk- X*} is not easy to study, given that part

of the infOrination is available at iteration k, )ut another part, x*, is not known until

the erld of the proci'ss. It will )e seen that the sequence of search directions {pk} can

be stndied in its pllace, and this sequence mimics the behavior of {xk - x*}. This is

dom, ire bY proving that

1lxk - 1*11 = O(lIPkfl).

IlPkj = O( ll-- - X*1).

(ii) A first sIop in establishing these relationships is to show that the correct active set at

tie solb tiou is identified after a finite lumber of iterations. To be more precise, for

thlie db'rii algorithms, an~d in the corresponding chapters, we prove that if lipkii is

simill iouigh, then the correct active set must have been identified.
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A convergent subsequence can be extracted from {Xk}, using tile compactness of Q.

Select now a sub-subsequence having fixed active set, a subset of tile active set at the limit

point J.

If we take limits in
A1kpk + Ck _> 0

and apply assumption A2, it immediately follows that i nust be feasible.

If tile set of active constraints is non-singular at i. from

tlkpk + = AT/l

there will exist a subsequence along which {k} converges, Ilk - ft. Taking limits along

this subsequence,

This result implies that i is a stationary point for the nonlinear problem, contradicting tile

assumption.

To show that tile set of active constraints should be the same for p and i, in the case

when the Jacobian at id is non-singular, assume that sequences as described above exist, but

that tile set of active constraints at each Pk is not the same as the set of active constraints

at i. As IIPkII - 0, the set of active constraints at each Pk must be a subset of the active

constraints at X-,: but if it is a proper subset, then there must exist an index i, active at

.i. such that ilk, = 0 for large enough k, and this will imply fii = 0 0, violating the strict

complementarity assumption. I

The assumptions on the form of the problem guarantee that large enough steps can be

taken from stationary points in the QP subproblems when the points considered are not

close to solutions for the problem. The algorithm makes use of this property to move away

from stationary, points for NLP. The next result establishes the existence of some of the

necessary bounds.

Lemma 3.3.2. thrc (xist positive vales O.P., /3,, 13.,,, such that for all stationary

points x ,

min ci > )"p3;
i: ',>O

for thos sationr points having some iiegative multiplier clcmennt,

lmaxitt > f3spm;
1
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and for tho.' stationlry points that have a non-negativc multiplier vector, but are not sccond-

or d( r IKlF p irits.

max A,> pn,

1,11 rc A1 df n,,ti ., th( ith cigcnvaluc for the reduced Hessian at i.

Proof. Assume that there exists a sequence {Xk} of stationary points for problem NIT in

Q such that

rin Ck, - 0.
i:Ck, >0

Frout the compactness of Q, a convergent subsequence can be extracted having fixed

active set. and such that the minimum is always achieved for the same constraint (or set

of constraints). Let t* denote the limit point, which will also be a stationary point for

the problem (or will have a singular Jacobian for the active constraints, except we exclude

this case by invoking assumption A3). At x* assumption A5 will be violated, as the

corresponding constraints are active but have zero multipliers.

If the seq u enc is such that

max It - 0

using the same construction, assumption A5 will again be violated at i*, since at least one

of the multipliers corresponding to an active constraint will be zero.

Finally, if

maxA A- 0

for a se(tuence of lirst-order KKT points, the limit point will be a second-order KIKT point

but assuniption A6 will be violated, a~s the reduced Hessian will be singular. I

Using tine previous lemmas, in Chapters 4, 5 and 6 we establish the following property

for the different algorithms:

P1. There (exits a value f' > 0 such that if IiPkI < c', then the correct active set at

a sol ition of problem NLA) has been identified, and Pk is a minimizer for the (11)

l1lpwhlatlo. ai

In what tolh1ows, wv. assumne that this property holds.
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3.4. Equivalence of sequences

FOr a gi" 1i l' {.r :}, tihe neXt results establish tie equivalence between tle sequences

I.Xk - } m1 {-}.Pk)} allo)wing us to contInue [he sti ud of tl,- conveiv.,- li ,perti>s for Ilie

algoritims on the sequence of search directions.

Lemma 3.4.1. If x* denotes the solutioll point closest to 1-k, thn thcr( (X'ists a constant

Alp, indcp( ndl nt of k, such tha,'

IlXk - x*11 < A41,11p . (..1.1

Proof. The proof is in essence the one for Leinia -1.1 in [GMSW861h], and takes the

following form. Let c denote the vector of constraints active at x*, let A be tle .Jacol)ian of

the active constraints, and Z an orthogonal basis for the null space of A. Define

h(x) ( Z(x) (x) )
kxpanding hi(.) about x*. and noting that h(x*) = 0, we obtain

hi(x) = li(9i)(x - x*)

for fH,(Oi) - Vhb(x* + Oi(x - x*)), where 0 < Oi -_ 1 (see Goodman [Go85]. for a discussion

of the definilion of Ii). Define So as the matrix whose rows are given by 1ij(0i). Then

(. ) ( SO(X - *). (3.4.2)

Assume that 1p4 < (' for suitably small c', so that properly PI alpplies and lhe smallest

singular value of t he reduced lessian of the Lagrangian function is bonided below. Yromn

assiiption A 5. S( is nonsingular, with smallest singular value liiforn iv boinded below

(seo, e.g., liohibilson [Ro-l74]). Because of assunption Al, the relation (3.4.1) is initnediale

if lp-11 > (', aid we ienceforthi consider only iterations k such that IIpdI <'
'akiig r rx. in (3.1.2), aind using the nonsingularity of S0 and iiorm inequalities. we

obt aini
II1'.r - .,* II !- ,1(II,'kll + 11 O, l ) (1 13
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for .ome bounded 3. We now seek an upper bound on the right-hand side of this equation.

Since the solution for the QlP subproblem identifies the correct active set, Pk satisfies the

equat ions

AkPk -ck an(l Z[kpk '-Z

From these equations, assumption A3 and the positive definiteness of the reduced Hessian,

it follows that there must exist a constant j > 0 such that

3(lickfl + IIZgk9) < IIPkjW. (3.4.4)

Since 3 and 3 are independent of k, combining (3.4.3) and (3.4.4) gives the desired result.

I
TFhe converse statement is proved in the next lemma. This result is not strictly necessary

for the convergence proof. but it is included for completeness, and because it simplifies

c,rtiain argunients. It also requires certain additional assumptions, whose validity will be

(,t ah llisled ill the following chapters. In particular, if Zk denotes a basis for the null space

of the Jacobii at Xk corresponding to the constraints active at x* (defined in the same

way as before), then the sequence {ZZIZk} must be bounded, and any limit point, say
Z*TH*Z*. must be positive definite.

Lemma 3.4.2. Lct x* denote the solution point closest to Xk. If any limit of the sequence

{Z'IkZk}i., po.sitive definite, then there exists a constant A1, independent of k, such that

IipkjI lI'-lIXk -

Proof. We start by showing that whenever 11Xk - X*11 - 0, we must also have I[PkII - .

Assume that that is not the case. Then there exists a sequence {Pk} obtained from QP

sii bproblenms at points {:rk} satisfying xk - x*, and such that j]Pkjj > c for all k and some

> 0.

Also, there miust exist a first QP step dk along the way to P., satisfying jldklj > c, where

> 0 and all prviois steps converge to zero. Define
dk

bod h T11l adb

so that . ik a fea.si be QI' step. Extract a subsequence along which hoth Z[IIkZk and 6 k

have a I lit. Then, if Pk (lenotes the step taken in the QP subproblel immediately before

obt(iilkk g 
0( ll0k + fgk)Trlk < 0,
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and taking limits we obtain

g* T6* < 0 r: A* TAl*6* < 0,

but from strict complementarity and feasibility it must hold that 6 = 0. Again, taking

limits in

('k(Pk) - 'k(Pk + dk) > 0

we must have

eT *T I <d 0dz Z I 7 dz <0

contradicting the assumption that Z*T]I*Z* is positive definite, so p* 0.

This result implies that there exists a 6 > 0 such that for all 6 < 6,

Jlxk - X*II < 6 jlPkii < (-

where c' is the value in property P1, Pk is obtained as the solution of the QP subproblem

and the correct active set has been identified.

If II1'k - .*11 > 6. tile result follows trivially. Assume that II'k - X*11 < 6. Thell, as inl

the proof for Lemma 3.4.1, from (3.4.2) and the boundedness of So we get

IIXk - X*11 >- 3'(llck11 + lZ/ gkll). (3.4.5)

Also, from tile nonsingularity of A* and ZTHkZk for large k, for small enough Iark - X*11

we have, given that Pk is obtained as a minimizer of the QP subproblem,

,3'(ljckI + I+ Z gk[) > IPkII- (3.4.6)

Combining (3.4.5) and (3.4.6) gives the desired result. I

The previous lemulas justify replacing the study of the sequence of distances to the

solution set by the sequence of search directions. A result that is closely associated to the

last two leminas, and that completes the justification for the study of the sequence {Pk}, is

given by the following property that, as in the previous case, will be assumed to hold for

the rest of the chapter, and is proved in the following chapters.

P2. IIpkII = 0 if and only if Xk is a solution for problem NLP.

It should be remembered from the remarks in Chapter 1 that the meaning of a solution

for problem NL P depends on the algorithm used, but in any case it is either a first-order

or a second-order K KT point.

It was mentioied before that under assumption A6 the sequence generated ib the

algorithm has a iiiquie limit point. File next lemma proves this result.
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Lemma 3.4.3. If JlM.I - 0 and Xk+l is obtained as Xk+I = xk + akpk, 0 < Ok <_ 1, then

the ,St ,'Iw {Xk } has a limit x*, a solution point for the problem.

Proof. From assumption Al and Lemma 3.4.1, it holds that any limit point for the se-

quence is a solution point. If there exists a unique limit point for the sequence, the proof is

complete. Assume then that there exists more than one limit point.

From

II'k+1 - Xkli = akIPkll 0

it follows that the limit points cannot be isolated. To prove this, assume that we do have

ijolated solutions, and in particular that there exists a limit point x* and a positive value

such that for any other limit point x we have llx* - ±11 > .

Let {xk, } denote a subsequence converging to x*, and such that {Xk,+l} is convergent,

huit its limit point I' is different from x*. Select i large enough to have

-I [k, - X IlXk,+i - Xll ! S IlXk, - xk,+illl

We call t len write

Ii ."k , - dk + lII -- llx* - ll - llxk, - X*1 -ll~ k,+ l - - Ij => JJx* - j1I < 3c
-4

but this contradicts the previous assumption.

If limit points are not isolated, select one of them, x*, and construct a sequence of limit

points {j'j} converging to X*. From the previous remarks, as all limit points must be solution

points,

r(Xk) = L(Xk)= L(x*) F(x*).

Notice that all solution points must have the same active set, from strict complementarity

and nonsingilal'itv of the Jacobian at all limit points, implying that the terms ATc are zero

in all cases.

Define Xk -

114 - X*11

and select a conlvergent subsequence having limit point d*. From the Taylor series expansion

for the activo constraints,

-(X) = 0 = c(x*) + A*dkl1k - x*ll + O(ll.rk - X*I1I),
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which implies that for any active constraint i,

0 = (Tdk + O(Hl~k - X*11) = aTd* = 0,

and d* must be in the null space of the active constraints at x*.

For the Lagrangian function we can write

VL(x. ) = VL(x*) + VL(x*)(xk - x*) + o(11-ik - x*ll).

Using the )roperty that all points considered are solutions for the problem, and so their

Lagrangian functions have zero gradients,

0 = V 2 L(x*)dk + o(1) = - V 2 L(x*)d* = 0,

but this contradicts assumption A6, and the sequence must have a unique limit point. I

Descent properties

As a consequence of Lemma 3.4.1, to prove that the algorithm is globally convergent it is

enough to show that Pk. - 0. This result follows from the boundedness of the merit function,

and the fact that the merit function decreases by an amount bounded away from zero by

a multiple of Ijp .12 in each iteration. The first step along this line of reasoning will be to

establish that Pk satisfies certain descent properties. These properties can be considered to

be related to the well known condition for global convergence in unconstrained optimization,

that the angle between the gradient and the search di-'ection must be bounded away from

orthogonality. The explicit form of the condition to be used is given (and assumed to hold)

in the next paragraph.

P3. There exist constants ;31 > 0, 2 > 0 such that the incomplete solution for the QP

suhproblem, Pk, satisfies

T 1 T
9kPk + -PkIkPk < -13111Pk(I' + /I211rkil.

3.5. The penalty parameter

The penalty parameter in the algorithm is modified so that at each iteration it is possile

to decrease the value of the merit function by a, sufficiently large amount. Chapters 4, 7

and 6 include proofs for the following pro)erty, and specific definitions for the value of the

penalty paraiMeter einsuring that the desired decrease can be ach ieved.
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P4. T here e'ist , value 1)k such that for some positive constant /3, independent of the

i1tera iol,

6'(O,p) <_ -3,1,jJp,1 2

for all p > 14,

W, will al.ko i.i"sUtii that tile sequence {pk} is nzondecreasing.

In th e ca.,e when Ilie reduced Hessian is indefinite, a slightly different conditioni also

proved in ('uia ter 6. is used; in the modified condition ~( (O,p) is replaced by o(O,p} 0 ." The

;dloaltiots that Ihis chialge introduces in the results to follow will not be discussed here:

I liey are sl uidied ili detail in Chapter 6.

\helevor p is tttoutiotled in the results that follow, what is meant is not the actual vdue

of th, penalty paraiteter, but rather the value of the bound ,p from condition P4. All the

.reiults still hiold if this value is replaced by a bounded multiple, p < hfi, for some It' > 1.

Also, we NeT1',d to jimpose a condition on how often the value of the penalty parameter will

be uipdated. It will he assulled that there exists a positive conlstant 3, > 13, sutch that rio

,p)date is w,,tfr.il whenever Qj0.p) < -I,,. IPkt 2.

3.6. Botmndedness of the steplength

lie reot ( f tie global convergence proof consists ill shiowing that tile steplength is bounled

away from zero, andt so the poteatial decrease implied by the bound in P4 and (2.2.3) is
act ually <t t ,ainued.

A first result . whose proof depends on the forn(t of -k; and 3,,1 it< rodltced in ti follo\i ug

chapters. where it will he justified, gives a first bottd for the rate at which the penalty

pil ralntter H allokd to increase in the algorithm. Tighter bounds will be introduced in

P5. For ;ilt.\ iterati or ,i it which the value of p is modified,

an 

k1(1,1 < A

Pk lzk, - 'k ,11 <

(,Il Jl' 'Oill-t;l N',
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The notation k1 is used in all that follows to indicate i terationis at which thle value of

tho peiialt v paralineter needs to be 1110(1ified.

W o introduce anl expression for o'( 0) that will be used extensively in thle p~roofs of

results related to thle behavior of thle mnerit fun ction. To derive it, consider first the gradhient

of' L. xith Ii lsheci to x . A and .,,

(y(x) - lx)A + pA(x)'T(r(X) -

V LAx A, s) =--A (r - ") (3.6.1

It follows t hat ((1) is given by

(.1 ) = 1  1  + 1l) 1T.17' A I) ", 7' ;T + ATq - pq T(C - )

+ (2 A -I ..)T - [)11 - 11 2 (3. 6. 2

where 9. .-1. and c are evaluated at .r.

The following results. analogous to those in [GNMSW'86b], comiplete the p~roof for tihe

boundedness of tile steplength. These results start by proving the boundedness of certain

qluan~tities. related to the penalty paramieter, that appear in the termnination con ditions

for the iiiesearch; these results provide refined bounds for the rate at which tile p~enalty

lparanieter iniav increase with respect to the ones given in p)rop~erty P5, once tllis pro,'ertN

is assuned to hold. In all these results it munst be reineltlberedl that t here exist two cases

regard]ing the behavior of thle penahvY paramieter p. It m-ay remiain bounded throughout tile

algori thi, iii which case the result s follow trivially, or it mnax need to he increased in an

infinite numnber of iterations. This last case is thle one addressed by the next lenlinas.

Lemma 3.6.1. For all iterations kj at which thec p)enalty paimnleter has to be nmodified,

T -11M, 11"k + (2Ak, - lk, ) T (c

Wh( 7 - P k, d( 00t( S 111e QP 770/Ip/U rs( at Pk, arid It' is aI 1 ositir( constant.

Proof. Iii the proof we drop) thle subscript ki. If IIpII > (' the result follows, froml thle

assullptiolts and the boundle(ness of the mnull iplier estimiate. Otherwise, fromi P1 the

search direc tion nlist hlave been ohta;i ned as a. solution for thie Q P su1bproblenl , i in piing

that

1 7)+ I) 17)3.-3
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Also, if p- denotes the value of the parameter before being modified,

0'(P-) > -OH IPI2, (3.6.4)

and from the definition of 0,

T- K ...1  + 3 (- - )-p(c- - )
I < PTI I '1PI2 + ( _ S)T(2A _i) - p- - )T(c - s).

From the nion-negativity of p-(c - s)T(c - s) and the boundedness of II the desired result

follows. I

Lemma 3.6.2. Th rc cxists a constant M such that for all 1,

/J.(O,,(Pk,) - k,+,(Pk,)) < )I. (3.6.5)

Proof. To simplify notation in this proof, we shall use the subscripts 0 and A to denote

quantities associated with iterations k, and kj+l respectively. Thus, the penalty parameter

is ijncreasel at .ro and r, in order to satisfy condition P4, and remains fixed at P0 for

itrations I ....A A - 1.

From the definition of o,

pu = pOF - p-A s) + pg(- s)T(c - S). (3.6.6)

Ako. propertY P5 i plies

poufro - soll < M and p,1, - Sfl < 1l.

Since jj,\( is bonnded ( Lemma 2.4.1), the only term in (3.6.6) that might become unbounded

is / )1. '. The desired relation (3.6.5) then follows if an upper bound exists for po( 1-' - F).

('onsider iterations for which Ipoll < c', so that property P1 applies (for all other itera-

tioiis p is bounded, and the result holds from assumption A2). In this case, P0 is obtained

as a solution for the QP subproblem. Let fio denote the QP multipliers corresponding to

Po.

FExpanding F/, about .ro, we have

1, - I /) ( ,- - X0 ,go- I). (3.6.7)

Simnilarlv if w, ,'xpaild c, about xO. we obtain

, , o + AO(Xj _ XO)+ o(1Xo - X,-112). (3.6 ,)



11.1. - < K 11,flIA'Ii a id Il~r - .V 1 < 'eI~

andlt th s ii 221e exp~ressioni ()= .;It'ji - flopn antd ( 3.6.S ) in (3.6.7). we obti i

Ij. - 1, (cto - c, ) 11-1 + o)(iix uIII)" 2 ))

\V. Thu, ek to hound

Pk) 1" - h P) CO 0 ' O C 1- j0 -+P 0'n max( III'UH' l'.

F0 derive it hound 1-on the first terint on the riitia i lid of (3..9. qeIinia I:.fI Can

be us'ed to wrlite

Bec~ use/'~ >0 u J' IL IA IJ and I/pll are boun ded, front (3.6. 10) we cui cidel

'rat

/)0 C0 /gK l 3.6. 11)

CotItlr hlow Ih lie>coiild termi on the right-liant sitde of (369.if c7- djetiut es tIlie

1wi-iatkie pjtrT" Imr all t'otmipoielts of cl-. from fi10 > 0 we, titlst have

P0 Cf./io <_ 10.- - 3..12)

atid froml '.2. 1.1 ) we have

Usizig- piopeitY P5 anid the relat iol t)( K 1),, We ('totcjittl that

Ihllv ()tit.itle thle thIird ternit otil t, ierg-hand Slide of) 3.6i.9). It foll'ws%., fromi prt~yerlY

P5 and tii* relaio p(t <u K I liait

mdhIl <l Ni* an l- <N

1"'0 (imaxi'd [<1 mm 2))K . 13.. 1)

'hII~izj .6hi. 11 ). (itG. 1.31 iluth (:.6. 11). w'e t)Itt u!i li IIlohbund

p) , -l*,~~)< 3.1
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Lemmira 3.6.3. 1 h(v ( xi.ts a cauqant .1l such that, fin- all 1.

kl+ I - 1

'ki 1  : Z I0ckkil < w!. (3.6. 15)
k=kl

11roo0f. A Ii Ifi previous Ilnmna, we use tire subscripts 0 anid A' to denote qunant ities

:i,)Cjlit d v% illi i terat ions k, and k1+1 respectively. For 0 < k < A' - 1. propertY ( 2.2.4a)

11111)""dli I)Y 11W oice of 0
k a rid the fact that tho lperaltY parameter is niot increased, imply

I hat

k- 0 k+ I (T~~ ( 3.k.1(i)

K-1

O- 0,, 1:(O - Ok+) I3~.~
k=0

)ieT 1w k I h oquliinVi (3.6.17), (,3.6.16) anid property P4 to obtainl

K-I

k=0

I?' Ii1, i expiessioli arid using the propeQrty that 0 < 0 kk < 1, we obtain

J'31 E iu2kj'<-0

I (~ ie~i Ii llow, bY rrultrplving (.3.6.1-S) b~ /')0 arid using Lenmma :3.6.2.

Lemmaru 3.6.4. T I/u ti ists a constant A! such that, for- all k,

'k I'k - -Sk II < M1.(.611

Pl-oof. I -Il'4 1ll'tatioll of thli two previouis lenmmas. olbserve that (3.6.19) Is Iimrmediarte

: wl py-ilv P5 fil A- = 0 and k K.

1() oli!. I Im4)liil for k =I . . - 1 (iterations at whlich thle pena~lty- pitrjarritvr is

1,(t ll wel~ fi rst consider *i'r. Let rrnharrod and barred qurantities tlt'rote e'vai at ion

-f A', - AJ
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aind the bmind fOllows frot Leinina 2.1.1.

Ifc, < ,A,/pu, then 0 0. If it addition r, > 0, then

polci - ,Yj = po c, < A,

andi t(ie saile result applies.

Therefore. assuen that c, < 0, c, < A,/po, and expand the ith constraint function

around xf:

C = C1 + ±a i p O( lkiuto112 ). (:3.6.20)

Rewriting the previous expression, we obtain:

C, = - -(- o)c, + oo(a, p + c, ) + o( I1o,puW'). (3.6.2 1

Adding and subtracting (1 - o), on the right-hand side of (3.6.21 %(ives

,--< (1 - o)(c,-.r,) + ( -oo)s, + o(,,p+ C ) + O(1,,oP). (3.6.22)

The propert ies of o', .s, and a, p + c, imply that

( I - o(())s + %(.,4, + q,) > 0,

and when c, < min(OA/po), (3.6.22) gives the following inequality:

poe si _ po(1 -I o)c, - ,I + poO( lupoI ;,l . (3.6.23)

There are two cases to consider in analyzing (3.6.23). First, when c, > 0, or c, > A, /po.

the term pic, - .,I is bounded above, using the same arguments as heOre. The second term

oil the right-haid side of (3.6.23) is bounded above, using Leminia 3.3 Thus, the desired
bound

poIc, - s'I < A!

follows if c, > inin(0. A,/pu). Extending this reasoning to the seii.i ,it ,' 1. t' - 1,

we see that the quaitity pulc,(.rk ) - si(xk)I is bounded whenever C(.J ) > iin(0. Ak,/r0),

or c,(Xk 1 ) ? iinii(0,,k-1),i/po).

('onsequentl , the only remaining case involves components of c dhal are negative and

hav -s, = 0 at two or more consecutive iterations. Le (" denoo,, do,, suhvector o' such

colipoielL{ of c. Using the componont wise inequality (3.6.23) and l h fart I hat 0 < n < 1

we have

Pufl( I) - .(.r 1 )11 < po)jjc(*,) - .* ,,(xO)II + ,,,o(I /'
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If we pro ,,d pt, the relevaut sequence of iterations. the following inequality must hold

for k = .... 1 - 1:

k-1

,,,lt .,k) - .(' )II < poui(XO) - . (Xo)1I + PO (( I ,62).(3.6.2 )
J=0

T,. resulm tlhe follows by applying property P5 and Lemma 3.6.3 to (3.6.21). I

lhe next (two lemmas establish the existence of a linesearch step bounded away from

z,r. nip I(l,,,,it of k and the size of p. for which a sufficient-decrease condition is satisfied.

Lemma 3.6.5. /'O(_ 0 <_ k.

(o) _< -c4(0)+ AlPk lH,

li, r, N .- I i m.,tutt in (dp(rident of k.

Proof. \V,i drop the subscript k. From (3.6.1),

( 2 V~~Z(±PC - s))2c, + PAT I -,T ,I

TI, -A 0 I

-PA + p1]

.,o that

" 117(0)p - 2,p('(0) - s,(o))pTV2c,(0)p

+ P (,I(q)p _ i7) T1 j(O)p _ q) - 2 T(A(f)p - q). (3.6.2-5)

I,(9) = V 2 F(O) - Z,(, + o )Vc,(O).

',e In w oleive bounds on the first two terms on the right-hand side of (3.6.25). The

first t i, botilded in magnitude bv a constant multiple of 11P112 because of assumption

A2 ;1d t I h. n d dness of ;JA(j (from Leinima 2..1). For the second term , we expand c,

in ; l ,;1Y1r (qri(- about x:

(',I ." -+- Op) c(.r) + o 1,(X)lp P y2p'lT2 ci(.r + p)J,

whr,, U . i .< O. Since .,(0) .s, + q, using (2.2.2) aid multiplying by p, wo have

0p, + + #q,4 ) p( + p21v2("( + 0,,)).
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We know frolmi Lenl a :.6.A that pcic(x) - sj is bounded, and Lemma :3.6.3 implies that

Ptll"2 is bounded. Therefore,

p I(' - .si(9) <Ji, (3.6.26)

where .J is a constant independent of the iteration. Using (3.6.26), we obtain the overall

bound

Z p(ci(O) - st(O))prv2ci(O)p <_ JlPII2  (3.6.27)

where J is a constant independent of the iteration.

Now we examine the third term on the right-hand side of (3.6.25). Using Taylor series.

we have

a, (x + Op) Tp = aT p (3.6.28)

where 0 < 0, < 0. Using (2.2.2) and Lemmas 3.6.3 and 3.6.4, we obtain

p(A(flp - q) (A(O)p - q) < p(c - s)T(c - s) + L1lplH, (3.6.29)

where L is a constant independent of the iteration.

From (3.6.28) and the boundedness of I (Lemma 2.4.1), the final terin on the right-

hand side of (3.6.25) can be written as

- 2, T(A(O)p - q) _ 2 T(c - s) + Mp(12, (3.6.30)

where Al is a constant independent of the iteration.

We now observe that

P(c - S)T (c -- S) + 2 T(c -- s) = -0'(0) + pT9 + T(c - S)
= -0(o) + pTqg - .1t) - i, 7

and using Taylor expansions we obtain

pl (gi - A7) = pT(]* - A* T P) + O(11p112) = pTA* (A* - it) + o(11112).

(ondition C8 on the multipliers implies that there exists a constant Al > 0 such that

pT(g _ IT,,) < fMlIp112 .

From i' k - A*, stri<t colplelnentarity at the solution, and the fact that the correct active

set is identifiod for fIIIp small enough (property P1), we eventually have it > 0 arid t T,; > 0.
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From (.3,(i.29), (3.6.30) and the last results, we have

p) (A()) - q )T(A,(O)p _ q) - 2 T(A(O)p - q) < -6(0) + AI'IjpII2. (3.6.31)

Combining (3.6.27). (3.6.29) and (3.6.31) gives the required result. I

Lemma 3.6.6. The linescarch of the algorithm defines a step length a E (0, 1] such that

0(a) - 0(0) < ana'(O) (3.6.32)

amd o > (i., th n 0 < or < 1 and 6 > 0 is bounded away from zero and independcnt of the

it( ration.

Proof. If condition (2.2.3) is satisfied at a given iteration, then a = 1 and (3.6.32) holds

with -) trivially bounded away from zero.

Assume that (2.2.3) does not hold (i.e., a is computed by safeguarded cubic interpola-

tion). The existence of a step length a that satisfies conditions (2.2.4) is guaranteed from

standard aia iysis (see, for example, Mor6 and Sorensen [MSS4]). We need to show that a

is uniformnly bounded away from zero. There are two cases to consider.

From the assumption that (2.2.3) does not hold, 0(1) - 0(0) > ao'(0). Since 6'(0) < 0,

there must exist at least one positive zero of the function

V,(0) = 0(a) - 0(0) - a00'(0).

Let Ck* d(miot the smallest such zero. Since ib vanishes at zero and a*. and 0'(0) < 0. the

imnam-value t heoem implies the existence of a point d (0 < 6 < a*) such that 0"( ) 0.

i.,'.. for hich

-' a) <0(0).

Bc;mse ( - q,. it follows that

-(d ) - iO'(O) = (a - ')'(0) > 0.

"1heorfoe. mmi,(<e the finction 0'(o) - i<t(O) is negative at v = 0 and lnon-niegative at 6. the

m,,amm-value t lieoem again implies the existence of a smallest value a (0 < n (i ) such that

(3.6.33)
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The point oi is tle required lower bound (il the step lengtlh because ( 3.6.:J3) implies Ihat

(2.2.41b) will tiot be satisfied for any 0 e_ [0,(I).

Expandiig o' itt a Taylor series give,-

0,((k) = 0'(0) + ()0"(9),

where 0 < 0 < . 'Ilerefore. using (3.6.33) and noting that q < I and 0'(0) < 0. we obtain

0'(0) - 0'(0) I0'(0)10 = 0/( ) = ( I 1 ) O) ,( 3.6.3.1 )

(Since c_ > U. 0 must be such that o"(0) > 0). VWe seek i lower bound on o , aiid liecie a,,

tipper boniid on Ile delonli iator of (3.6.31). We know from I.emia 3.6.5 t hat for some

positive constant A

o"(9) < -o(0)+ A'l = Io'(0) + flp, II2

implving

- 0'(0)I + h11 P12

Dividing by Io'(O)l gives

-> AP- (3.6.35)

1 Io'(0)1
From proplerly PI it follows that

10'(0)1 >_1 .-"1I1l2,

and thus. t lie deioiiiator of (3.6.35) iav be bounded above is follows:

10Mil If X lpll )If1+ Io'(0)-- -- l + 3,,l I 2  - 3,+,D--

A uniform lower bound oil a is accordingly given by

> ,( 1 -(.3
3,, + 2N (3.6.36)

satisfying I lie condition. I

From these 'osulls global convergence follows, as given bY lhe following property, to be

proved il lh coriesjipolding chapters,

P6. For tlIi, .oquice gonerated by ile algorithl,

hin Irk - 0.11 = O.

wheoe .v* is ;I solui n t 1)1pint for Ilie prohlei.
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3.7. Convergence of Lagrange multiplier estimates

Once the g!,,hal convergence of the algorithm has been established, the next step is to show

that the multiplier estimate Ak also converges to the desired value. The result presented

below, given as Theorem -1.2 in [GMSW86b], implies that the convergence of the multiplier

estimates is a consequence of the global convergence of the algorithm, and the facts that

the multiplier estimates are bounded in norm, and the steplength is bounded away from

zero.

Lemma 3.7.1. Assume that P6 holds, and let A* denote th multiplicr r(ctor at .r*. As-

suime also that thre r( (ists a positive value a such that the steplength at any iteration is

bounded away frm sro: Ok > a > 0. Then

lir IAk - A*11 = 0.

Proof. From (2.4.2),
k

Ak+l E -ijkti, (3.7.1)
j=O

where

'kk = I- ^IJ' (1=- a'), j < k, (3.7.2)

with at = I and 0 = aj, j > 1. (This convention is used because of the special initial

condition thal A0 = po.) From the boundedness of a and (3.7.2), we observe that

0< 6 <a' < 1 or allj, (3.7.3a)
k

E .-/; 1, (3.7.3b)
j=O

lYk < (1-6)k-j ,  j < k. (3.7.3c)

From condition C8 on the multipliers we must have

Ilk = A* + Mkdktk (3.7.4)

with O kl < .XI, dk = I.rk - X*l and Itk!j = 1. From property P6, K, can be chosen so

that. for k > A',,

111kd ld (3.7.5)
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We cal also define an iteration index K 2 with tihe following property:

Il _ ck) k < (3.7.6)
- 2(k + 1)(1 + .,u + 1I1) 7)

for k > h"2 + 1, where !
3
nmu is an upper bound on 111k1 for all k. Let K max(KI, A'2 ).

Then, from (3.7.1) and (3.7.4), we have for k > 2K,

K k
Ai- Ikj + 1: Yajk(A* + l(It)

j=O j= A'+ I

Hence it follows friom (3.7.3b) that

K k

Ak+ I- A* = Z ?k(1,j - A*)+ Y Z kAli dItj.
J=0 t=K+I

From the ounds on !p, ll and IIti, we then obtain

K k
il-Ak+ - A*lI < (<... + IIA*IZ) -jk + E tjkLPj jI. (3.7.7)

J=0 j=K+1

Since k > 2A', it follows from (3.7.3a) and (3.7.3c) that

Km' K ~K-
Zk < j(1 - a)k - j < Z(1 I _) 2K - j <_ (K + 1)(1 _)K.

3=0 j=0 3=0

Using (3.7.6), we thus obtain the following bound for the first term on the right-hand side

of (3.7.7):
K

(0n,,u. + IIA*11) E7jk < . (3.7.8)
j=0

To bound the second term in (3.7.7), we use (3.7.3b) and (3.7.5):

k k

-jYIMd1 < 1U Z :Yjk <_ 1-. (3.7.9)
,/=K+l ./=K+I

Combining (3.7.7) (3.7.9), we obtain the following result: given any c > 0, we can find K

such that

I -Ak-A*II<- for k > 2A'+ 1.

which i tllilio." the convergence result. I
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3.8. Unit stteplength

As wnentioned before, the (letermination of the rate of convergence for the algorithm proceeds

in two steps. One is to show that a unit steplength is always accepted for all k large enough;

the basic results used for this proof are introduced in this section, although the result will

be proved in the corresponding chapters. The other step is to determine the convergence

ratc of thle sequeuce {.rk + p- - .r*}. This will be done in Chapters 4, 5 and 6.

Phe following leimas determine the limiting behavior of ccrain subsequences related

to tie penally paraieter p. Again, for the case in which the penalty parameter remains

bou nded the results follow imnmediately. so their interest lies in the case when p is assumed

to be unbounded.

The first reoult is an extension of property P5, and its weaning is again to obtain a

better bound for the rate at which the penalty parameter may increase, once we know

that the algorithin is globally convergent. As before, its proof is left to the corresponding

cliaplers.

P7. For iterations k, iii which the penalty parameter is increased, assuming an infinite

selueice of such iterations exists.

lin Pk, Ik II = 0

and
lia pkI1cku - kI -- 0.

Other results, extensions of those given in the previous sections, and providing refine-

nvts on the rate of increase for Pk, are presented in the next lemmas.

Lemma 3.8.1. If Ih ,'r exist. an infinift subscqucncf {k}, thcn

lin) P,, (O.,(Pk, ) - k,,I (Pk,)) 0.

Proof. w, ,,se t he same notation as in the proof of Lemma 3.6.2. From the boundedness

of IIAH (Le,,,,,,,a 2.1.1). and th, fact that po < p,,, we have

PoIA (,o - .)1 < 211A0uII poilco - ,nII 0,

rouA7'(Ci/ - s, )I < 2IIA,,l p,,l",, - ,II 0,
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and from prol)erltY P7 we have

po((Po - 0)- p0(Fo - F) -0. (3.8.1)

Using (3.6.10),

poKlIpoI + po(co - so)T(2 Ao - fio) > poCPo > po(co - SO)T(3.8.2)

U.sing again property P7, from (3.8.2) and assumption A3, implying the boundedness of

bllwe get T-

IoCoio - 0. (3.8.3)

Yroii (2.-4.1 ) and (3.6.12) (keeping t he same notation),

poc,-no <_ poc10 fio < PoIf01lICK - SK11 - 0. (3.8.4)

For the last terin in (3.6.9), we can again use property P7 to obtain

poO (max(llpoll, jp,Jj')) . (3.8.5)

Froni ( 1.l), (3.8.3), (3.8.4) and (3.8.5) we obtain

po(Oo - 0) - 0,

giving the desired result. I

Lemma 3.8.2. For general iterations k,

lin PklIPk' = 0.

Proof. If p is bounded, the result follows from property P6 and Lemma 3.4.2. If p is

increased in anl ii,ite sJ,1,seqwitc ut" iteraoita, hen from (3.6.16) and Lemma 3.t.6,

K -1

PO E HPkI 2  2 o
k=O 

-

01t

and the result follows from Lemma 3.8.1. I

Lemma 3.8.3. For gcnral iterations k,

lint PkIlck - 'kll = 0.

•~~~ x ,l
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Proof. If j is bounded the result follows from c* > 0, A* > 0, A*Tc* = 0, property P6,

Loemna 3.7.1 and

Ci - rin(c,-).
P

If p is increased in an infinite subsequence of iterations, consider two cases:

(i) If i is such that c, > 0, then A* = 0 and as

pici - sit = I min(pci, Ai)I,

from the convergence of the multiplier estimates, eventually p~ci - sii =IAjI - 0.

(ii) For those i such that c* = 0, implying A* > 0, consider iteration indices large enough

so that the correct active set is identified, implying aTp + ci = 0. Then, from the

Laylor .Ceries expansion for c (3.6.20) and Lemna 3.6.6 (using the same notation as

in Leinia 3.6.4),

c' = c, + aaP+ o(fo0po0l ) = (1 - ac)i + O(1poll').

Recurring this relationship for the kth step between k = 0 and k = A' we get

k-I k-1

Pkck PoCk, -I - a3 )co + Poo(Z I!p3,2),
j=o j=O

but as 0 < (iJ < I we obtain

k-1

PkICk, I polco,j + poO(Z 1p12). (3.8.6)
j=O

From property P7 we must have that polco, I - 0, and using (3.8.6) and Lenima 3.8.2,

PkICk, I - 0.

'[his coinplvtes the proof. I
Another relationship that will be~ neededJ in the following chapters is proved in the next

eini na.

Lenima 3.8.4. For large enough k,

T
JIk-;k = 0.

.\ohrrliios 

i tail 

be neddi 

tholn 

chpesipoeinteex
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Proof. Assume k large enough so that the correct active set has beeTi identified.

(i) If i is suich that c* > 0, from condition C9 on the multipliers, Ilk, = 0.

(ii) If i is such that c* = 0, then, from strict complementarity, A* > 0. Also, from

l|einiia 3.s.3, pk(c. - k, ) =min(pkc., , ) --, 0, so for large enough k, Leinmia 3.7.1

will iiiplV pkCk, < Ak,, and

k, max(0,Ck, -Pk = 0,

proving the result. 3

Using; the previous lemmas. the following property will be established in Chapters 1, 5

and 6:

P8. There exists all iteration index k such that for all indices k > k the unit steplength is
accepted: "k: = I-

I he following chapters make use of these results to establish the rates of convergence of

the corresponding algorithms.

3.9. Boundedness of the penalty parameter

'File main coui deration in the definition of the penalty parameter p is to ensure that the

directional derivative (or the curvature along the linesearch) is sufficiently negative. This

strategy leaves open the possibility that the value of the penalty parameter may be forced to

grow without bounds to satisfy this condition as the algorithm progresses. Notice that for

the convergence and rate of convergence proofs the boundedness of the penalty parameter

is irrelevant; it is only from the point of view of the practical behavior of the algorithm that

we may want to have p bounded.

This sect ionl presents conditions that suffice to guarantee that the penalty parameter

remains bounded. The required conditions can be given either in terms of the properties of

the inuitiplier estimates, or in terms of the behavior of the ratios II/Hpjzj/j I (or both). The

study of the sequence of ratios for quasi-Newton methods is not simple, and the conditions

)resented here are given only in terms of the properties of the multipliers.

The following lernira proves the basic result concerning the behavior of the penalty

parattoter. The notation jik is used for the Q1P multiplier at iteration k.
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Lemma 3.9.1. ('on.id( 1" (n it rat io index k such that for all iterations with k > k both

prpl tif., P1 und P8 hold. If

11p -I - Ilk 14- =ij O(11I1411),

th, n tht I-( x'i.,ts (I finilt caluf p such that

0'k(0,15) K 4nIIPkj1

for nil k > k.

Proof. From the definition of o'. (3.6.2), and the fact that Pk is obtained as a solution for

the Q) Publobrullein , we have

,(0) = -p1  + (2A - it - ( )'(c - 8) - it - pile - s1 2 _

Also, front tlie correct idontification of the active set and property P8.

- s, =rain (ci. 0 otherwise.

[sinlv Lemillit 3.,-. we can write

'(fl) = - )T11 p + (2A - it - It )TC _ p1C112  (3. 9.1)

where r now d(llotes a vector where all the entries corresponding to the inactive constraints

are zero.

From I ) = -c and the non-singularity of AY (assume k large enough. and use

assumiption A3). here must exist positive constants 31 and ,/2, independent of the iteration.

such that

l1 < anldzy [ an'd <I I .11(hlll.

Th,, al-i Iiml it iiea ml/e nomel ric mean inequality implivs t, hat for any y, z. -1 > 0.
+- (3.9.2)

2 2-y

[sing ti t, ro,,,ull, we can write for an adequate 113-

_r, -1- _ 4 ,11ZI/)z, + ,hlpyl, I.

•~~~ z
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Also, from property P8 and he assumption on the form of 1[21lk - k - fikl,

(- - 1~k - 1)'k _<  lIIIIcl <- AIIplI II <1 ) mTT 11 Zpz + 13,;IP'. 112.

0o11bi il'n lhese results, we obtain

'(0) - piZ 7tt Zt1z + 37llpl 2  ),lc12 < - lTTI!Zpz - (p - l37 ],3 )C 2 .

> 2
and if we select p > .37,, the desired result follows. I

Note that if the multiplier estimate is such that

1i1k - A*ll = O(llXk + Pk - X*ll).

the condition ill l.eliima 3.9.1 is satisfied. Lemma 2.1.3 establishes this property for the

least-squares filult iplers at ,rk + Pk, providing an example of a multiplier estimate whose

use guarantees the boundedness of the penalty parameter.

3.10. Summary

The goal of this chapter has been to present the structure of the convergence proofs to be

completed in tile following chapters, and to establish those results that are common to the

proofs for the different algorit hmis. The steps in the proofs that depend on the specific

iniplenientat ion of the different algorithins have been left to be shown in the corresponding

chapters. These steps are collected below so that they can be more easily referenced.

The next chapters prove that the following results hold for the corresponding algorithms:

P1. There exists a value (' > 0 such that if jiPkII K (, then the correct active set at

a solution of problem NLP has been identified, an( Pk is a minimizer for the QP
subIproblemn.

P2. jPk(I = 0 if and only if Xk is a solution for NLP.

P3. The e exist constants 31 > 0, ,32 > 0 such that the incomplete solution for the QP

bprOh)le, ~,ii. k, satisfies

T' 1 T1  11U2  H!JI)k + 2 PkkI)k < -' 1P11k + 3,211r[I.
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P4. There exists a value Pk such that for some positive constant f3,1, independent of the

iteration,
Ok(o, P) <5 _fd ,lpk 112

for all P > Pk.

P5. For anv iteration k, in which the value of p is modified,

Pk,IIPkII2 < N

an (1

P Ilick, - Sk,1II N

for some constant N.

P6. For the sequence generated by the algorithm,

lim IlXk - X*11 = 0,
k-oo

where x* is a solution point for the problem.

PT. For iterations k, in which the penalty parameter is increased, assuming an infinite

sequence of such iterations exists,

lirn Pk,IlpkII2 = 0

and

lim P~k, 1k - Sk1 II = 0.

P8. There exists an iteration index k such that for all iteration indices k > k a unit

stepleugth is accepted: Ok 1.

The theorems where the corresponding rates of convergence are established will also be

proved iii (Chalpters 1, 5 and 6.



Chapter 4

Positive Definite Approximations

to the Hessian

4.1. Introduction

In this chapter we study the convergence properties of an SQP algorithm, defined along the

lines of the framework algorithm introduced in Chapter 2, and such that Ilk is constructed

to be positive definite. The algorithm is very similar to the one implemented in the code

NI)SOL, as described in [GMSW86a], with the difference that the search direction in a

given iteration is computed as an "incomplete solution" for the quadratic subproblem. An

incomplete solution in this chapter will bc a feasible point for the subproblem obtained

according to the rules indicated in Chapter 2.

The goals for this chapter can be summarized as being

* tile derivation of a global convergence proof for the algorithm, following the lines

indicated in Chapter 3; and

* the identification of additional conditions that need to be imposed to attain superlinear

conveigemnce, amd the proof that the algorithm achieves this rate of convergence.

The steps needed for these proofs have already been presented in Chapter 3. where those

intermediate results that are independent of the definition of Ilk have also been shown. To

complete the proofs, this chapter need only establish those results that depend on the form

of Ilk, prol)rties P1 P8.

57 I
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4.2. Definition of the algorithm

The vmain point left to be specified in the description of the framework algorithm in Chapter

2. is the form of the approximation to the Hessian of the Lagrangian function, Hk. The

condition oii Ilk that is assumed to hold in this chapter, and that should be added to

conditions C1 C9. is:

C10. The imat rices Hk used in the construction of the QP subproblems are positive definite

and boundd. with bounded condition number.

This nssiiilliplion is identical to the one inade for NPSQP. In practice, such a sequence may

he ,enerated (see [GMSW86a]) by updating a quasi-Newton approximation to the Hessian

of' he L.a",r miai function in each iteration.

From Ilii> condition, some quantities will be uniformly bounded in the algorithm. The

iotat ion Int roduced below is used throughout the chapter for these bounds.

31,1 is an upper bound for the largest eigenvalue of 11: pTHp /1,111(p(I 2 .

, If i~s a positive lower bound for the smallest eigenvalue of II: pTj1 p > ,s lHlpII 2 .

4.3. Global convergence results

The resIt, iln this section establish global convergence properties for the SQP algorithm

u111der "tudv.

The hirst stcp in the proof is to show that, from assumptions A1-A2, condition C10,

and tle foirm of step (i) in the solution of the QP subproblem, the norm of p will be

unifornily bouided for any p obtained as an intermediate step during the solution of the

QP sutbprolil l.

Froni th, conlition lipull < ' ljkI, and assumptions Al-A2, it follows that I11oH < K

- (lld
12 -w'(po) </,in,,9IK + f/3iH/ = /K.

For anY /). i.'(f,) < K, implying

(P 11 I l!I)TII(p + JJ- 1) - T I g _ ,

a n d h ln c o A j , +Up +/l-t I'g ,
I~i± 11' -- KI.2,H±tt m
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giving the bound

IipI< 3 ,,p rig + 2K 1 +

Properties of the search direction

The next result is the one presented in the previous chapter as property P1, that is, if the

norm of the search direct on in any given iteration IjPkj is small enough, then the correct

active set imust have been identified.

If the norm of the stationary point where the search direction is computed, II PkI, is

bounded away from zero, then condition C6 on the search direction implies that IIPkIj is

also bounded away from zero, and so the proof of P1 needs only consider iterations where

ijpkh is small.

From Lenima 3.3.1 we know that if this norm is small, we must be close to a stationary

point for probhlemi NLP, .i, and in that case we can use the results from Lemma 3.3.2 to

bound the size of the search direction.

Before proving our first lemma, giving a bound on the descent from the stationary

point, we introduce bounds for several quantities that are related to the descent that can

be achieved in the QP subproblem at i' when, starting from the origin, a step of the form

indicated in Section 2.3 is taken.

The step to the nearest inactive constraint is bounded by

-OaTd = ci > OPc :, a > 3o _ /3spcZ C 3 , n - On A u n d

The step described in condition C3 is bounded by

C> ;i3 = min (3 , Odscsr , am). (4.3.1)

Also. the following bound on the function value holds:

4"(o) < lag 7'p < -1spdi -1j3
4 dscsPm/ 3 g

Since we oi ly have approxinations to the second derivatives, we cannot guarantee find-
ing a (irclih of negative cuirvatu re; consequently , we cil only prove convergence to a

tirsl-order l\,T point1. Wheinever the terin "soltion point" is use(d imt liie following para-

graphs. wlt is IlteaItt i's a, first-order K'l' point for probleni NIP.
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The following leni a uses the previous bounds to obtain a lower bound on the descent

available froh 1) at a point that is sufliciently close to a stationary point tor problem NLA).

It luist be remarked that only properties of the approximation to the reduced Hessian.

z rtZ, are used in the proof, and so the result still holds under the relaxed assumptions

introduced in the next chapter.

Lemma 4.3.1. lhcrc ('ists. a value 3,r > 0 such that for any stationary point J riot a

.1,olution of pibh in NL', and any point x, if lix - xfl < 3p, and p is thc scarh direction

obtlail(d froit a ,ataitioriary point for the QP subproblcm at x, P, having the same actic

-0 l.,/ ' 7'1t f1., ht 71K it (It/ -

01))- 0p) > -,d,

o1 at x tht .Icobi for the actire constraints is singular.

Proof. We consider only the case when the Jacobian of the active constraints at i has full

ra 1k.

If the leinia does not hold. there must exist a stationary point i.. not a solution for

lproblin NIT. and a sequence {Xk} converging to i, such that there exists aii associated

(eqtttce t/k) } of stationary points for the QP subproblems at the points Xk, having the

saite active constraints as x', and such that

V4k(flk) - k(Pk) <- 8tispd

for all k.

We s ow fiI'.t that IPk I - 0. Let p* denote any limit point for the sequence of Q P

statiot ary miitts (no to that the sequence is bouinded). From the assumption that the

correct activo ett ha been identified, it must hold that *. = 0 (since - 0 for the active

con st I'ai nt.,).

A 1o. fl') ]] /11.k + Pk 4. , selecting any convergent sequence for Ilk aitd using the

non-singuI a itv of .1k for large k, Il*J)* O. but from the positive dVefiniteness of Z7"!lkZk.

it in t hold I tat 1 0.

"r(,ii i his l t,,ilt it tlw ist hold t hat

a' 1) k C k, -



4.8. Global con 'rgencc rcsults 61

a d for lar-e enough k (we assume that the correct active set has been identified),

ran T O PC
hull a kpk + Ck, >I:a IL-k+ck, >0 2

II aldditioi to this, if Ilk denotes the QP multipliers at /k, then Ilk - ft and for large

enough k, if b -j $ 0,

maxilk, > --s.
1 2

A bound similar to the one in the previous paragraphs can then be obtained for k large

enough. as follows. The step to the nearest inactive constraint can be bounded by /30 1 3.0

(,ti , ,le (1, = d. w ienjever [[i-1I 0. Then

9Td k+ pllkdk Ik Ilk.

(Consequently. for larre enouigh k,

V'(0) = (gk + llkik)Tdk <_ --3 dsc L sPM

Ilence a bound for the step to the minimizer is given by 3 -13 implying

1 i '1 9

,f'(k) - ,(jik + (tkdk) > IJspd .

coitradicti ig tle hlypothesis. I

III tle tlaleument of L.emmas 3.3.1 and 4.3.1 the case when the Jacobian is singular has

been explicitly considered. In the next results we make use of assumption A3 to exclude

this case. (The possibility of having a rank-deficient Jacobian will no be examined.)

We shall show that properties P1 and P2 hold for this algorithm, but first we need to

introduce some notation.

h' denotes tie value of b associated with O = 3 spr in Lemma 3.3.1. If 1Ik~l < b' then the

c iili i, 'lii l.emma -1.3.1 is satisfied.

The stai resull for this section is presented in the next lenma., where Pk denotes the

,a rchi directiol, obtai ned as an incomplete solution for the QP subproblem.

Lemma 4.3.2. 'h Ir xists (I ralu f' > 0 such that if 1IP4- < ( th n tPk is a mniuimi:cr

for tli 0I' .,ubprobl in anid II romyct actirc SO( (it a solution has bmii id(rdtilid.

.11'", 1Il.k I if (1114 o7l if .rk. i. a first.-orl( r AT point for lroblcIuI NLI1.
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Proof. From Lemma 4.3.1, it holds that if iijikl - b° and Pik was not obtained as the

minimizer for the QP subproblem, then

O - Pk > 8/3spd

aid from the continuity of 0', there exists a. 6 > 0 such that IPk - Pkjj > 6.

I)efiiie
6

3' = min(6 , ")

If 1lpfkjj < -)I"- thel,
6

IIPkII - IIk - PkII - jIPkj _ > 30

If Ilf)kII > 3,1'. then from condition C6,

Pk > II _
) .5 p 13 s i p

ald tints in all cases the final point obtained has norm bounded away from zero.

If Pk is obtained from tie minimizer of the QP subproblem, then Lemma 3.3.1 can be

used directly. Assume that a sequence of points {xk) exists such that JjPkJJ - 0, and all Pk

are obtained as the solutions of the corresponding QP subproblems, but the active sets do

not correspond to the one at a solution. By extracting a subsequence having fixed active

set (there are only a finite number of possible active sets) and taking limits, a solution for

the original problein with that active set is obtained (from assumption A6, it must hold

that the mulliplier vectors converge to the multipliers at the limit point), contradicting the

hypotthesis. Hence, a lower bound for IIPkI must also exist in this case.

Vor the second part of the lemma, from the previous remarks, Pk = 0 if and only if Pk

is a -,olution for the QP subproblem. Furthermore,

T T
Pk = 0 is a solution of QP 4 gk = ATik, Ik 2! 0, Ck 2! 0, 11kCk = 0

Xk is a first-order KKT point for NLP, (4.3.2)

comploting 1e proof. U

Descent properties

As (,Xplaiid in ('iapter 3, we need to impose some condition on the direction Pk to ensure

hat adquat, dosc ent can he obtained in each iteration. To be more precise, the bound on
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ie directional derivative in step (iii) of the algorithm should be satisfied. This condition

WaS presented ini the previous chapter as property P3.

The next lemimia shows that if the starting point for the QP subproblem is selected as

indicated ili ('hapter 2. the search direction satisfies property P3. Remember that rk was

the qualitY iyntroduced in ( 'hapter 2 to provide a bound for the norm of the initial point

Pk,-. and that its most relevant property for the proofs that follow is its relationship to

Ck - sk, giv(, in (2.2.5).

Lemma 4.3.3. ( r/ t xist constant.s .31 > 0, 32 > 0. and initial points for th( QP sub-

probh in tmt givf cah. for Pk tl( ./u(sarch dirtction, satisfying

T 1 7' 2 l~
PkYk + 72PkIkl'k < -31 lI + ;321]rkII. (4.3.3)

Proof. It the proof we drop the subscript corresponding to the iteration number. Consider

the following cases:

(i) p is obtained as the solution of the QP subproblem. Then. for some ft > 0,

p 9  + p 7 'p p11)= T = -c 7 -< -1T - < I1f1 l1 -11

pT + pTtlp < _ P~llp + )", llC- 11,
p g+ 21 I -p 2

where ....... > 0 is a hound on the norm of the QIP multipliers. Note that from

condition C1O, pTHP > 3,1!IIpII 2.

(ii) p is obtairied by moving from a stationary point /). Different cases need to be consid-

ered separately.

Assiiie 1hat flpfI > V' anid Ili) -poll < _60 If H I = b /(2i3,C), then from (2.2.6),

II K ll :S-Lb) + 111)01 - + 3p1lll1 < 6 ,

blt Oils is a contradiction, implying that under this condition jjl > (1, in which case
Ilvii _ ;nmp < nlp l i l

- I -KVI

l)efiing , = Inm'j + Ai ,ihz0mp. we have

± + p <~1711 llvll < 3.'hKlll _ ,I.hx7.......

t'siig thi condition on the initial point, it must, hold that Ilpoll > lb0, and

1 + I1 , < - 11)7111) + ,

!1 2
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e Assume that 1P -poll > 60 If Vi' denotes the objective function for the QP subprob-

lem after the ith QP itemrtion, Oi = gTp, + pTHpi, we can write

- Td, + pT,di) - o4dTndi = d Hdi oa(1 - lai).

Summing over all the iterations to the stationary point, and letting gTfi+ '2fTHI,

vo- C,= EdTHdi ,(I - lai) 3,3,,1lilldl 2 ,(1 -a,

but froii l1f - poll = 1E aidll > IV, for at least one i we must have

60
a-ldd1I >

where m is a bound on the number of steps; using oi < 1, it must hold that

0° ( 1 1 > 2 (60)2 (4.3.4)C'O(2 -- ( 3a!O i  2) -- I

Fromn

V'o = pogo + IpoHpo Ai;lpoll <  .,3pI3lrll (4.3.5)

we can deiive the following bound:

pTg + LpVHp <_ :S 0o - I < _1 iP112 + 13c,; lirll

for 0 < ,1 < -/ ;2

* If 1llll < P, then from Lemma .1.3.1,

oo- ' ' > -8I 3spd,

and using (,1.3.5)

pT_ + Lp"111p < -',3.d+ 0,J,'ZJl3 rl < -311p112 + /3'13ollr11,

W~lwr' 0 < 3$1 
<

I3 ,I/ RI." m /"
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Bounds for the penalty parameter

We now show that the penalty parameter can be selected in such a way that the initial

descent available for the linesearch is sufficiently negative. This result is the equivalent to

property P4 in Chapter 3, although in this case (since 'Ik is required to be positive definite

from condition C10) it seems natural to define the constant )H in terms of pTIlkpk, as in

the next lemma. In the spirit of the remarks made in the previous chapter, what we define is

a bound for the value of the parameter; the actual value should be chosen so that it satisfies

property P4 and is bounded by a finite multiple of the value j given in the following lemma.

Lemma 4.3.4. Thcr cxists a value Pk > 0 such that

'(O2p) <_ -TktkPk (4.3.6)

fo; all p > Pk.

Proof. Again, we drop the subscript corresponding to the iteration number. From (3.6.2),

the condition to be satisfied can be written as

pTg _ (2A - ,)T(c - S) - p(C - S)T(c - s) _I-TIP .

A similar but stronger condition is

- b 1 (c - s) + 32,T(c - s) + (2A - ,i)T(c - s) - p(c - s)T(c - S) 0 (4.3.7)

for a vector b uniformly bounded in norm, a constant 13' >_ 0, and vi - sign(c - si), so that
c

- .) = Ic - sill. These parameters must satisfy

p + 2P Hp < ,(c - s) + I2V(c - s).

'lie following paragraphs introduce specific definitions for b and fI.

Rearraigenet of (.1.3.7) shows that a sufficient condition for p is

p( - .s)I(c s) >_ (2A - p - b +¢,v)W(c s). (4.3.8)

A value f) such that (4.3.8) holds for all p > fi is

112A - p, - b + I3vll
lic - ,;I
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The value /) can be taken as (4.3.9) if 0'(0, p- ) > -where - denotes the value

of the peitaltv parameter at the previous iteration; and as any value greater than or equal

to P- otherwise. I

An inmmediate consequence of (4.3.6) and condition C1O is the satisfaction of property

P4,
O'(0) <_- - ,2-1 pN 11 (4.3.10)

for "3H 3sel

The value of /^ in the previous lemma has been given in terms of two as yet undefined

quantities, b and 3. The value for f3' is related to the constant introduced in property P3,

while the value of b is related to the QP multipliers at the current point. For the purpose

of satisfyiig lroperty P4. b can be taken to be zero, but as will be seen later, it plays an

important role iu ensuring that the penalty parameter is chosen in a way that does not

inhibit superlinear convergence. The following paragraphs offer rules for the definition of

these two qtuantities.

The conditions that b needs to satisfy to allow the algorithm to converge superlinearly

are:

bk - *

and for swall enough ])kMI.

T

pkgk + fk(Ck - sk) < -- pkHkPk.

The value, for b and 32' in (4.3.9) can be selected as follows:

* De-fim, lip. as the QP multipliers if Pk was obtained from the minimizer for the QP

su tprohlen: otherwise define ftk as a multiplier estimate satisfying conditions C7-C9.

0 Define
/.i-efizw p /L if pT9  + ILT(c - s) < -- TJlp,

it otherwise.

* l)eli ue

3!=-max(0,,1j 2),

where
3)2 c _ Il = pT g +pT- t + 6Tc_,)
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Note that .3' is bounded, since from Lemma 4.3.3,

p T + 2pTIP + bT(C _ S) : pTg + PTyP + bT(c - s) < (0-2 + IjbII)IIc - s1.

The strategv for the selection of the penalty parameter Pk is to define its value to satisfy

property P4, while remaining small enough to be bounded by a multiple of . An example

of a selection rule having these properties is as follows.

Let
Pk Pk-I if(00,pk-1) < - 'k k, (4.3.11){ max(Ik,2pk-1) otherwise

where Pk is (lefiIed as in Lemma 4.3.4. Then, for any iteration k, in which the parameter

needs to be increased, it holds that Pk, > 2Pk,- , and the penalty parameter goes to infinity

if and only if its value is increased in an infinite number of iterations.

Proof of global convergence

In order to prove global convergence, we need to establish that property P5 holds. The

proof of global convergence relies on Lemmas 3.6.1 to 3.6.6 to show that the descent in each

iteration is bounded away from zero by a large enough value, and on the boundedness of

the merit function. The next lemma shows that property P5 holds for this algorithm.

Lemma 4.3.5. For arty iteration k, in which the value of p is modified,

Pk, 11Pkt 112 <AN

PkiICk, - Sk,1 < N,

for sonr co. tant A'.

Proof. All quantities in the proof refer to iteration ki, and so this subscript is dropped.

From the boundedness of 0 , Lemma 2.4.1, the definition of b, and condition C7 on the

multipliers, Ihere must exist a fixed constant N, such that

112,\ - it - b + 0,'11 <_ N,,

and from the, definilion of j) and the condition that p has to be selected as a finite multiple

of P,

pile- 91l < N,.
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For tlie secoiid part, using Lenina .1.3.3 (we add the terni (-s) using the boutdedness

of fljJ ), we tanl write after some algebraic manipulation

o'(0) =1,g + (2A - )'(c- s) - pilc - sll1

<_ Tllp - 31i pl[ + (2A - p - b + 32 v)T(c - ) - piC - s112 ,

and if we have o'(0) > - p-7 1p, then

'i ll" <_ (2.A - I- t + 32v)T(c - s)* < 112A - - b,+ VII j11C - s11.

We reorder tentlh to obtaiil

le - .l : 31 IIp12 (1.3.12)
112A - /t - 6 + ;32vl1

Mult iplyin both sides by p and using the same arguments as in the firsL part of the
lerri vitaVihs

pllpill < N2,

colipleti"i tg he proof. I

can )iow coriplete the proof of global convergence.

Theorem 4.3.1. Ih( algoriflthr described in this chapter has the property that

hin lPkjl = 0 (4.3.13)

Proof. If 1p1-41 = 0 for any finite k, the algorithm terminates and the theorem is true.

1eii ci "( awsuvi the Olat flPkl[ / 0 for any k.

hen t ere is no upper bond on the penalty parameter. the uniform lower bounrd on

o of Le'niva :3.G.6 and (3.6.15) iumplies that, for any 6 > 0. we can find an iteration index

A' snic (t hat

IlPkl < fr fk > K,

which it jPlie, that 111k1l - 0 as required.

In t he btndod case, we know that there exists a value tp and an iteration index 1%" such

that 1, p /) for all ,1" k A. \We consider hnii ,'forth only such values of k.

pl, In noft is bY contradiction. We assume that there exists ( > 0 anl aii infilite

sil ewnqencl , ,} su,,ch that 11,4,11 > ( for all i. Consider onlY indices i such that k, > /i".
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lVtrV terit? ;lit" A inut Yield a strict decrease )in th li erit funict ion because, using

Liia 3.6.6( . 3. 10 ) an id thIe fitct tI at I t e pen a]t IN paranieter is itot itiodifiCel.

Oon) _ ()(0) S (TnI(P(O) K __jnfl'flj)j 2 < 0.

lhe adjust uncut of thleslack variables. s in step (Ii) oft he algorith (-ii a ii only lvad to a fu rt her

red 'ic tioli lit I le uiierit function. ats L, is quadlrat ic in .s and~ thle uiil iinizer with resp~ect to s

k Ile l c, - A/fl. For it eratinis from the subsequence we have

) O(Xk) < O(Xk,+i) - O(Xk) S K (o0f'

F10etiifore. .sInce lie mlerit function with p = ) (decreases by at least a fixed quauititv at

every s tej ill Ille su bseqiueuice. it mnust be unbounded below. Blut thIns is impossible. froml

a 1' Ilt1)tlohls Al. A2 and~ .eniia 2.A.1, so (1.3.13) muust hold. I

Corollary 4.3.1.

liiui I1rk - X*II = 0.

Proof. The i fiI ollows liuuiuidiately' froim llieorin -1.3.1 aiid Lenimia 3.41.1. 1

A seco i d co roll a rv est alisl e- lie( convergence for thle miiult ipl ier estiiates.

Corollary 4.3.2.

flm IIAk - A*11= 0.

Proof. Thle ci iiivergeuice of the inult ipllier estimate is a consequence of Loeniia 3.7.1. giv\en

lie refiilts iii Lemtima 3..6 andi(1 orollarV 41.3.1.3

4I.4. Rate of convergence

tliiei suit able additional asslumptionis it, is possible to show t hat the algorifthmt converges

aIt aipel t lrate. To p~rov~e t his result, we need to assui that Ilk converges to ani

ade~jiiate alll)iKlliltioui of V 2 ,,L(x. A* ). t lie Hessian of the Lagraigiaui function at lt(e

~l I lit ( fdmOil.sd " ft . 11) j11 s 1" V

In~~~~j th iliitgrslt i yblI.deie sI _\ I l be used to (leliote

tIh, lbsiati od l~w Lagraigati fucIon1011.

Ie o cwlditll hi 1> Iat wevq iipose, it alditio il oCl Cl 0.are:
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Cli. Followinig Boggs, Tolle and Wang [ITW82I, we assume

IIZ (Ik - Vk)Pkl= o(=lpk1 ),

where Z . a basis for the will space of Ak, is bounded in norm and its smallest singular

value is bounded -way from 0.

C12. 11,k - A*11 = o1llk - x*fl).

This is [lot the only set of conditions under which it is possible to prove that the

algorithin converges superlinearly. The next chapter introduces and justillfs -n alternative

set of conditions, where C12 is replaced by the requirement that the i lty parameter

inust be cl o' large enough near the solution.

The proof proceeds by showing first that the sequence {xk + Pk - X*) converges super-

linearly, and then proving that a steplength of one is eventually attained. We begin by

showing that property P7 holds for this algorithm.

Lemma 4.4.1. If thEr exzists an infinite subsequence of iterations {kl} at which the penalty

pairtircter 1i.I incrcas(d, then

lin Pk, Jjpk, 11' = 0

liin pkIlCkl - skll = 0.

Proof. We drop the subscript ki in what follows. From definition (4.3.9) and boundedness

of the ratio 1)//;.

pilc - sl K- 2112A - p - b + :3"2VII.

and front th, deliniition of b after Lemma 4.3.4,

bk, - A*.

As the QP i,.ltipliers satisfy pTg + pTflp = -cT/-, an] for p large enough p is obtained as

the solution of the Q1P subproblem, b eventually satisfies

P ± bT(j s+) < pTl p,

implyiig t hat we can take ' -- 0 in (4.3.9),
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From ('oiollarv -1.3.2 and the previous remarks we have

lirt 112Ak, - I,- -bk, + 02 ck1 1 - 0

a ii d

lira PkICk, - k1 II = 0.

We can now use (4.3.12) to get
liln N11 [11k, 11 2 = O,

completing the proof. I

We want to show that condition (2.2.3) is satisfied for all 1: large enough. To do this,

we need to be able to express p'(0) in a way that is related to properties of the algorithm

already est ablished.

WVe stat ly definling Tk - pk(k - 4 jtk) + pk[VkPk, where It" is the Hessian of the

Lagrangian fiction using Ak as the Lagrange multiplier estimate. We show next that the

satistfaclion of (2.2.3) is directlv related to the asymptotic properties of Tk. In what follows,

tle ab)fellce of ani argument indicates values at Xk, and an argument of 0 will indicate values

at Jk + OPk. for any fixed 0 E [0, 1].

Leruma 4.4.2. Thc following rclationships hold:

Qk(O) - ok(0) = 0(1- _0)O(0) + _L02 k + o(11pk112 )

2 Ik (I

',(0) (1- 9)O'(0)+ 97k + o(1lpk" ).

Proof. Iron (2.2.1) we have

F (O) - F- (A+ ( -A) ) T(C'k0)s q) + AT(c-s)

+ 1 P(C(#) 9- T~ .- q - 0( - 1 - .pc )T(C-

and using th, correspondtingi Taylor expansions around xk,

c,(0)- O, - - (I -- 9)(c, - s, ) 4- 102p 1 V2C,pl + )( I11)112 )
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w e obi ai i

P Oyp+~ 2 P7V 2 Fp - (I - O)AT(c - .s) - 0(1 - 0) T(c - s)

PTV2(. J
1 1)C~ _ Loj~~ J,2Cip + A'c - s)

2p - 9)(C _ - s) + 4p(1 -0)0
2 E,(C, _ 8,jPTV,2CII)

+ _L094 Z(PT7, 1 ,P)2 1 -( ;)Tc s)- O(~)2)

From Leiimma> Il 3.. .2, 3.8 .3 and 3.8.4I,

-~~~~~~ (P (h ±1277)±2(c -) + p(c - ,K(c -~)+01<

l (( I - 161),'+ Vv7 + p "9 + /IT (c - .s)+ o(111PI)12

0( 1 _ _o 'o + _L0 " +p 1 g .7 )) + 0(111)1 2 I.

lur t ho Sqcoii( restilt, from (3.6.1),

T 9'~(0i, - ii) 7 (A + O(p - A) ) + I)p T 1 (9)7'(cmo - -Oq)

1,(()- s- 0qI) + qT(A + O(ji - A ))-p/(~)-. Oq),

;11l a1d Ii li cm-res1_.a,(iig ryavivor series expansions we obtain

±1'I~ V29(I 1( - O9) 7, - 8))T\~~ + -~1 p'c~)

(1 "( - R(c .) - 0 2 Z,cp T V2 czp ± q ' A +I Oq '~

O(I-9)q'(, C .) p(2y1q 1A
2~1  + 0(111)1 2 .

I rmni Loni;, 1.1 :;.S.2, 3i.8.:; and 3.8.1 we finall'y get

+ Y 0 V "(.'v. ~- - .,) + Plc - , c- s)) + 0111K)

CC I o ),:) + 0 (p"I V ) + i''( i0 - A 'I,/)) + )'( 11)112),

Ilie f ii l" ii .vsa t. 1111k' uso (f thli relAt onslips nitrod need [i 1 l6, lei ?i'aonlY foi-

It(' pa rt oliil. va ca 0 = I

Coiiliii (C11 11plies lie sii perlea r oi%-rfgenic- o)f t~ln O(iiei''-k + Pk-

11 Ii' hi t ler 1 011 4
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Lemma 4.4.3. If condition C11 holds, then

IIXk + Pk - X* J1 = ,( 11k - * I-) (4.4.1)

Proof. As ,unm, k to be large enough that Pk is obtained as the solution of the QP sub-

probhlem. a11d the correct active set has been identified.

In what fhllows, all values refer to iteration k, except those corresponding to the solution.

('onsider first the decomposition of x' + p - x* into null-space and range-space components:

X - X = Z it+ Yv.

F-or the raiige-space component we make use of the series expansion, restricted to the

active (oiill'1 ailit s at J.:

0 c . + .A (.* - X ) + o(l11.1 - X* I I )

lroiii Ap = -c and the previous decomposition,

AY v - 0( lX - a' 11)

and from a~simiption A3.

v =-o(llx - .*11).

For the iiiill-space component. consider the corresponding Ttylor series expansions

at roili n da':

.-I* T "A* = y) + o(X

.:1'A* = ,TA* + ZAv ,(x - x) + o(fl - * 11).

(omilini I lise two results and denoting the Hessian of the Lagrangian function by It',

-r) ± .- A* = g + Zv(A, - A*, )V 2e,(. - x*)+ o(llr - *11).

From (orD)lirv 1.3.2 and lip + g = 1!fi,

h1(1 + 1,- x*) + AT(A* - I (It - I)p + CI - r*1)

l'i iig thO' de'composit ion of X + J) - X* into null-space and range-space COlDiipoient s. the

Zqt 1 ,, Z Z ( II - IV')p - Z 'V I, + o(1. - x,*a >.
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and from the p roperties of 1', condition Cll and the nonsingularity of ZTYV Z near the

sol litiloll
,I --(°111 - 1*11),

completiltg the proof. I

lhe maii lisuhI of this section is given in the next theorem, where it is shown that

after a f[nite number of iterations a steplength of one is taken for all iterations thereafter,

implying that the algorithm achieves superlinear convergence.

Theorem 4.t.1. 1 ud r it preitous conditions, the alqorithm convergs sup~rinarlq.

Proof. .\ in l'owell and Yuan [PYSG], observe that the continuity of second derivatives

£~V~i I le fi)tl()\l ing relationships:

F(x + p) = s(X) + (g(x) + g,(x + p) + 0(1lll2)

,c(X + p) = r(X) + !, (A (x) + A(x + p))p + o(IlpH).

-romtt I he a. h Ir series expansions we have

F1(.. + p) = F(X) + !(X)Tp + !pWV Ir)t, + 0(01pll2)

,(., + p) = c,(x) + a,(x)Tr + 7p'7V2C1(x)p + o(11p1! 2).

and sinc ( 1.1.1 ) imllies !1(.r + p) = g" + o(lpll), a,(x + p) = , + -)(llpl!), we get

TV ,p - (g* _)T 4 +(111412)

S(a* - ai)Tp + o(I 2 ).

(;i-,,,ii t 7, ), 1Ir2,Z', = i, pi prV'cp + o(llplI2 ). we must have

),T',Vp = Tr(q* _ A_ , *1) _ pl(g - A',) + o(I1i I). (.14.2)

('ndiliCI (12 ilmpli<es pI(g* - 7,l)= o(lpl'), and from (1.4.2),

p Ttl, + T ,'( - '1', ) = o(lipll ). (1.1.)

Frmn I,nma 1. 1.2 and (1.1.3),

o(1)- 1 (o) 10'(0) + o(l1,12)
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but from (1.3.10) condition (2.2.3) is eventually satisfied, and we have Xk+1 = k + Pk for

all A- Large enough. In this case, from (4.4.1),

lir JIXk+I - X * O,
k-. .c. Ik - X*1I

i.e. superliuvar convergence, completing the proof. 1

4.5. Summary

In this chapter we have introduced and analyzed an algorithm that is based on the framework

algorithrn of' Chapter 2. It uses a positive definite apl)roximation to the full Hessian of the

Lagrangiari function, and an incomplete solution for the QP subproblems. The study of the

convergence properties of this algorithm has produced the following results:

* When the search direction and the multiplier estimate are defined satisfying conditions

Cl- C9. aud the Hessian approximation Hk satisfies condition C10, the algorithm is

globally coi'c rgtrt.

S'[he algorithi converges sulx'rlincarly if the following conditions are satisfied:

Cli. JIzJ(/Ik - Wk)pkI o(llPkl, where Zk, a basis for the null space of Ak, is

bou nded in norm and its smallest singular value is bounded away from 0, and

C12. 1111k - A*11 - o( lXk - X*11).

ln tie chiapter that follows, we will show superlinear convergence for this algorithm

under condition Cll an(1 an alternative to C12:

C12'. \VlW , thre itecrates are close to the solution, the penalty parameter is chosen to be

large e'nough.



Chapter 5

Approximations to the Reduced

Hessian

5.1. Introduction

T1his chapter considers an algorithm similar to the one presented in Chapter 4, with tile

difference that conditions C10 and C1l are relaxed. We shall now only impose conditions

onl the approximation to the reduced Hessian (but not on the full Hessian approximation).

There are three main reasons to consider relaxing our requirements. From the second-

order optiiiality conditions, only the reduced Hessian can be expected to be positive

semi(tefinite at a solution of the problem, and so it seems unreasonable to attempt to

approximate the full Hessian by a matrix that is required to be positive definite. We may

wish instead to impose positive definiteness only on the approximation to the reduced lies-

sian. Secolly., the size of the reduced Hessian is usually smaller than that of the full

Hessian, anld in many cases the difference in size is significant. For large-scale problems,

approximating the full Hessian is problematic, whereas approximating the reduced Hessian

call be straightforward. Finally, it is not known in general how to construct matrices Ilk

that satisfy conditions C10 and C1l, but on the other hand, it is not too difficult to enforce

satisfactory coiiditions on the asymptotic properties of the reduced Hessian approximation.

The con(litions that replace CLO-Cli take the form:

C10'. Ilk is uniformly bounded, and ZTjHkZlk is positive definite with smallest singular

value bounded away from zero, where Zk is a basis for the null space of the active

constrainits at. the initial point for the QP subproblem at xk.

76
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c II. < 1i 1; Z I' ( PklI ). Where It k deiiotes I e I IvSsiaI I of t Iek Lagr a I IgaI I

The dcfi ii it ii of tie( redu edi H essiani req iii res the speci ficat ion of a set of active con-

st raiuits. ( 'iiclid to tie( issues,- presented inl t his chapter Is thle notion that at each iteration

al t 1 miil :ct et " of conist raintts. whose chiaracterist ics wlil b-' specified later, is selected

liriio t to a iil 0Solve ti( h Q" su bproblem. ('ondit ion C 10' miakes use of tlhis ;A,-

>11Iliptioll i ll Impitosingo Conition~s oil the redulcedl Hessiani applroximiation. Fromi iteration

to IttClijli this active set ila Cage. and( thiis requires tie( definiiit ion of a strategy to
cop, withi th' ,liiI i izc of thle reduicecl Hessian approxinratioi. [Fortuna~tely, this is not

a11 issue0 il the' Iiiii pi'oxid'd wve canI show Convergence, sinlce anyV i-easoiiable (lefiititioli of

lie Illit ial act i~e stwt for the( Q P subp~lroblenm will eventunally remain unaltered for successive,

'oiidli ins CIO' a-IId( C11' apply onlY to the( reducedl Hessian approximnationi, anid the

CM1i.ver*0elice Itlools p~resenited inl this chapter inmpose no requiremienits onl the( matrices lk)'k

It eem, rea~nialble theri to ask what is the role of these miatrices, if any, in the algorithiir

('olsidei'ed. 'I 1w ailiwc Is that Zk{/Ik } is neeedo FOr the COrn pn tat ioll Of t he n]] -Sp~ace

of 1 ol Plk and k IIkk is Uised to olbta-il the QlP IuIItiphiers.
If ()tir maini cuicerli is to dlefine anl algor'ithi in able to deal with large-scale p~rolblemis, we

inav take ;idvi lta~ ii o(f' tIt(e freedomn we hiave ili thre definit ion of thiese miat rices, and Select

l1im so that thle computations inl whichl thley appear become as simitple as posible. A

111 ulclini c has been to take X"IIk , equial to zero and Q'k10'1~ to lbe a well- behaved

osiyedefli e matrii x. for exam ple the ident ity. Wit h thlese Choices and~ condition Cl 0'.
it i, clear t linit C 10 is atitoniatical lY satisfied, and the proofs ili Ch'lapter 41 only need to

b11modilied w Ii ever t hey miake ise, of C11, that is, for tie( puirpose of estaiblishiing .ie(

late of coil veigelice of' the algorithni. (Ili this setting C11 can no longec hle expectedl to be

satisfied.) 'le iiindilie'd p~roof uising C11' is given at thec enid of the chapter.

The PH IC('dlipg paragraplh considers omlx aI particular set of optionis for tie( (lefi nit on of

Ilk.. A iniore general approachi to the( problemn would be to (lefilie an algorithmii withI siilatr

coiivergelne- I -'opert les, but, requiring otnly condition CIO'. instead of 'CIO. Th'lis situnation

a rises If f I waPl 0grain of moderate size xv are approximia t inrg tie( whole matrix Ilk, ))II %k'we

on11 lvq(flire( to be p~ositive defiiiite. ('onstrmctiiig II. inl this -way would allow us,

to ;lhiev' 1)6'!!t'[ laite" of, conve rgence hrin lie ones attainable wlreni we onlN approxiniate

In' 1(I eurc d I '> i
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One case that this approach would cover is the use of one of the recently proposed

quasi-Newton updates that preserve only the positive definiteness of the reduced Hessian

approxi mation (see for example [Fen87]).

The chapter proves global convergence for an algorithm that assumes only that CIO'

hoids. Again. note that for particular definitions of Hk that satisfy condition C1O, like

the oil' indicated above, the global convergence proof in Chapter 4 is immediately applica-

ble. The chapter ends wit,, a proof for ie rate of convergence of the algorithm when the

al)proxirnatioll to Ihe lessian is required to satisfy the relaxed convergence condition C11'.

5.2. Global convergence results

We begin by introducing some notation for this chapter. Let Zk, as above, be a basis for

the tut1 Spale of .-, the Jacobian corresponding to the constraints active at the initial

point pt., for the QP subproblem at X.k Let ek denote the value of the constraints in this

,et tl th, curlent point, and 1'k a basis for the range space of "T The vectors p, and p,

are usd To di,, te tlie components for p in some null-space and range-space decomposition,

re.,pflCtivrlv; the specific decomposition will in general be clear from the basis matrices used

ill the correlponding expressions. Finally, w, < 0 is a vector such that Ap = -(c-+ U'c).

alr(d we xtnd it to a full in-dimensional vector by adding zero entries corresponding to the

liactive coistraints at the initial point.

'lider condition ClO', PT11kPk may take negative values, in which case i3 ,tH < 0. On

the k, ler huand, this cannot happen for vectors in the null space of Ak. We therefore use

lie followi rig constant:

'J.:tt rs Apt , e lower bound for the smallest eigenvalue of Ilk on the subspace spanned
Iv Zk. BIlk 2 kPZ ,11!II 112.

I'ropertWie P1 and P2 still hold under the new conditions. They may be proved using

a rmuir iit, ,imtidar to the ones presented in Chapter 4, with only a minor riod i fication

i troduced ill limia 5.2.1. The main change to be made to the algorithm given in ('hapter

1 is the introduction of a new bound for the directional derivative of the merit function.

li 1 ('ape0 1 t hobound was given as -1 'IfkPk , but under the relaxed assumptions oi

14 1liis ua nit," iay not he positive in all iterations. The new bou nd should preserve the

proporl h,I thew dir-ctional derivative is bounitded away from Zero 175 a quantity related

pret t enobya |naItiy elte
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to A\v .i.tiila hice is to its( at ltitwar cominaiition (of p 57pf/j, and ftcfVj to form

lie itid.

A\ St'iiiil l ae Ps tie (ltliliitiill (If Pk, to take into accouint our lack of kntowledge about

tilt'e III Ilk outII( sidete nill space of the "active" conistrainits. III (Chlapter I1 the(

>4'dIra ileclim ntwas olitailied froml t ie( Q1' stationary point by taking a descenit step kvtil

rejetto tilt ' Pbjective filict ion. Ill this Section the( step) from thel st atioiarv iolit Is

cmiiit('itd Int Itittils of thle Value of the descent available for the liliest'arcli, its t his flini i ni III

1gelterail hias hoth ei )r()pe(rtiles ( conivexity ) thiani the QP objective ftct ion. A miore genieral

apptlroachi is plesewctite iii slightlY different setting in (Chlapter (i.

Definiitioni of the(- search directioni

Altteitt juttedwi Iliive %w iiiodjfY sliglIII1 Ile w'aV t ie( ilclieesollit ionl Pk IS obItal liedI frontIl

11ie QPt stllvtll ka it I respect to the( coniditionis given tii Chlapter 2.

lit' V\il1 III P Iis ho(W obIt ailied b)y iovilig to the first stationary point for the (21

sIt ibpIobdIttII a at d by 11lie algotrithIIlli. k* alid fromh there, if the( statioliarY poitis n5 ot a

iii tiniiiier. I'm 111, (1e QPSubproblemn, by taking aI step along a (lest ent dlirectionl. To proceed

har1t her doi-, tnt scell worthlwhiile. Sinice (otul an approximuat(in to a j)part icuilar reduiced

l~ isiii kit(\n wii t becomle.. liecessairy to definle artificially thle curvat tile int an elilargedl

S pite. Nwnt tl\ itis l.tt are relinoved( froml the activ(e set. If we havel ani approximtation

I() tIlie hill I si a id Ille piropierties of thle applroximtationi ouitsidle the( cuirrenit siubspace

;in( t c(ilded lilt * 'mc tietin co e una be uaccept able unlehss special pre-

ca atii- atc I a keit . lit ( liplter 6i we introdluce coniditionis t hat wold alloow. us to pre vent

Tlb' wt1i1iai1teitielit to Stop at Ilie first stat ioniary poinit allows uts to work withI therece

lls iai pirll)xilliit )in far the iit ial active set exclusivelY, anld so the possible lack of

itt-atv Vt' bt'I ut 'lss tilside tit', cotrre'sponiding sublspace dhots tnot aiflct ; ul f thle Sst 1

akvu ii rminlg tl( hi lion process for t Ilie Q P Sitbproblem.i III particatr, coliditiolis C4 and

C5 w Ill mout Ii a i'd ill what follows.

ht I. lI' hei i such that If 1) = ±) od, then w,1 = ov, where ch'eirlYv, u< 0. Assiume

I hat d I" i'tlalatils t hat conditions C1, C2 andI C6 are satisfied, atu'd in patrticilar the

f'tbhtwiig tiill ti olds.

fool -,ttla 1,j, -. 0t. Note that cttiiitiuht (71 ih11lihi t hat i'. muist bt, biotull 11e11 < i,-
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Condition C3 is replaced by the following condition:

C3'. The step a is taken as the step to the minimizer of p((), where

gT + (d) + P+ (dz)TZTI!Z(pz + (d,) + Ikj + (v112).

To be more precise, if /'(O) > 0 then let a = 0. Otherwise, let a, be the step to the

nearest inactive constraint and define

am -

a min(ac, amt, aOt'),

where a, is a specified bound on the largest acceptable step.

Also, from the conditions on P0 in step (i) of the rules to compute the incomplete search

direction, and from the way a and d are obtained, we can show again that IIPH is unif mnly

bounded for any p obtained during the solution of the QP subproblem.

If I' denotes a uniform bound on the norm of the initial point obtained from (2.2.6)

and assumptionl A2, jjpJj < K, we have

-(Po) _ ;3nmK + 7(2311W + nmA)lt-2 = k,

and for any p up to/f, as py. Py 0 , it holds that :(p) <_ K, and hence

I(Pz + (ZTlJZF 2T THZ(-Z (1ZT) - T2((TH2)-l2Tg < f'.

From this result, we get the bound

1p, + ( n)-' 2Tgl
2 < 2K zH g

szH

implying

-- rn 2K3szH sail
11p: ! nm K 2K3-u + m2

For the step along d, note that

a < nOing + 3 szH + i3.ninA A

a K f~Iz,;nd

and from Id1 _< ,,, we must have that for some /3 ,np,

11P11 < dn"p.
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The avgu wfent in the proof of Lemma .1.3.2 still applies to this algorithm, except for

oil(, minor chlage induced by the introduction of condition C3'. It now becomes necessary

lo p rove thatt a bound similar to the one in (4.3.1) still applies to this algorithm, at least

for lhe ca c when 11fJIl is small enough (otherwise, condition C6 is sufficient to imply the

result ). 'he following lemma establishes this result, and so it indirectly proves the validity

of properties P1 and P2 for the algorithm.

Lemma 5.2.1. If flfPHf < 61, uhert_

6 1 /3dsc,3 spm

~"4IuJ3 und + 4), 3"m~,,,j

li n (t i. ,,ald ai (wy from z ro in condition C3'.

Proof. Froim the definition of ,!'(0).

= g'd+ Pzz ]I ,lz + j r,

gT d + PTlld - drll '(I - Hj1"rll2(; - vTA

p{p + (2, 31u,,, 3  + )n uv,,nmA )iIlPl.

For Ii/ I <

K:(0 < ,p + ,1jc3spyn < 1

and from con.dition C2,

T he sep I) t he minimizer of y( ) is given by = -0'(0)/;", and as

'1' =/dz + 11r,1l < tnax(O31, U )

w,, Call wlite a b(ound for this step as

> 1
3 dsck sp

rn

hi3"

Again. sel,( ting .1 = win (/37, i3' ) and using the same reasoning as in the discussion before

l.enma -..3.2. we get that the step satisfies a > -131 . 1
-2 g h

From 1ht liiresult. l)rolpert ies P1 and P2 follow along thle lines presentedl In Lemmna .1.3.2.
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Descent properties

The next result that we need to establish is that the descent condition given in property

P3 holds for this algorithm.

Lemma 5.2.2. There exist constants 0 < 31 , 032 > 0, and initial points for the QP

subproblem that give values for the search direction Pk satisfying
T i r T + )(T - T +~Tk " 12

Pkgk + - (wzI. ZkPz, + lik + wkJ < -- lPzkZktkZkPzk +0k + Wck H2) + 1211rk •11

Proof. Since no constraints are deleted from the active set until a stationary point Is

reached, we miust have /v = pv0 . Consider the following cases:

(i) p is obtained as the solution of the QP subproblem. Then for soni fi > 0,

pTg + pTHp = pTtT- = _CT- < IlfillIC-i6 < 1 HIIiIrli

and as w- = 0 at the solution, llIl < 3
n,Allpoll and pj- py0,

)lp = ZT It Zpz + (p + Zpz)TII 'po < pTZlI/ 2pz + 2f0jt,3,nrnp13pcsIlrV.

and we finally get

prg + 1(p-T7 tl ±pz +kW 2) < VI (prTll pz + 11k112) + KlrlIl,

wh]e re

K = /
3nmu + 2A~vjinmp3 pcs + 3

nmAiipcs.

(ii) p is obtained by taking a descent step on (r' from a stationary point f). There are a

iuimier of )ossibilities:

s If IIi)li > hI and Ili) - poll < !-A, we need to consider different values for 11QlI. If

HI lj < (I = 6/(2,3p.), then

uIn < J 1 + IIpoll < *& + 13PCIkll < (,,

but this is a contradiction, so we mu-: have lklW _> fl, in which case

IIp < , <0 P PH = Ill
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implviig that for 431 = nrn + ()1,11 + 0nmA)!nm,

p-rg + (pTZT2pl + IiVl) < 3 11p1j <)11 111.

Finall,. using IVII < 43,aIIPoll < 3 nmA/pPCs lrI,

T 1- T - 22+ T-iT 2p g + - (p,,Z IZpz + jjj) _ -(pzZ IIZpz + Il11l) + A'11r11

where I - 23',Dnp!fmAp 1/6
1 .

S Let ,:,, denote the function used to bound the desired descent. If jj - Poll > ' then,

after lhe kth QP itefation,

g, p 1 =IkkP " uZT u, +

Nlakil use of the fact that PYk = p, for all k up to the stationary point, we can

write

Yk-l - (k = Ok-1 - I'k + PoVtt(Pz, - pzk_)

wliee C1 k is the QP objective function after iteration k. For all iterations between the

initial point and the stationary point., it holds that

- 'O - i' + p~oYHfl2(iz - PZo ).

We cam use (4.3.4) to write

I ,01 IZ(pz - Pzo _< 2 3Ig/ 3 m.pl!poIl < 21(,I' 3 f apI
3psjljrjl = K'11r l.

If we let I 'o - t', it follows that

< ¢ po - # + AK'fr1.

From one of the intermediate results in the proof of Lemma 4.3.3, we have >
/ szt{ l~l Consequently,

!] -+ (pzZT"ll zpz + It + w 1l2) < -(pjzT2rllz pz + IV+ 1"i12) + K/'11l,

whero = A" + "A and

0 < 3 <

a ia I I i I i I I I
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* If t - . we know from Lemma 5.2.1 that we have descent for p, and the minimal

d,,scitt ritf, is bounded by

€, '0)d) (0)

whie- ; )/;" is the step to the minimizer. As the step is at least 1 3' by assuming

the ,;114 1minimum) rate of de,cent as before, we get for the descent from/j,

-2-P'(0)2 t -s 1q

11Y 'el1 ' ti\ l
-- < t 3l, < p

-1 + (i,)7 /2 tJp + V + wlj) <- 0i(pTZTHZpz + Il + wj 2  + KIlrjI

for 1 . This completes the proof. I

Bounds for the penalty parameter

W1 10w ( T,,i jil modified bounds for the penalty parameter. Ve assume that the miul-

tiplier estiI! at, - are obtained according to conditions C7-C9, given in Chapter 2. and in

additionl %,. Il ,' a: extra condition on the choice of the initial working set made at each

C13. Th, wiiti:l actie set must be selected so that there exists an (" > 0 such that if

jj,)k f", then the active set at Pk is the initial active set.

From til di,,l ition of the search direction, Pk, this condition implies that eventually pk

must b, t. ,luIiion .f the QP subproblem, and it must be determined in just ore QP

ittratioi (i , ,,iti raitinis added or deleted).

l),fi ,le i;,( ,1xiliarv vector
tWg - 2 -- Z Tlip. (5.2.1)

Pro ,,r? y P4, i ini ediate consequence of the following lemma:

remma 5.2.3. Thruc rists a l'alir ik such that

0k(),p) -(pT'kZkllkZkpz, + 1Vk + w, !12 ) (5.2.2)

fo lp
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Proof rFom the expression for 0'(0) given in (3.6.2), we can write, using (5.2.1),

,,(0) - p') ,g + plY g + p (c - q) - 2 "(c - s) - pic - ,sil
T- )/Tfj - pT-TJp - T T T -

S-1) Z21 Zp;, -p, It Yp, + p,,, + pTYTg - it A py

- jT
7Ap, - ILTS - 2 T((. - s) - pile - slIJ

S-P>'2tZp - 1j,+ ll,,:j2 + bT( + wj) + pl (wq> - 2T ATtL)

-1 I'S - 2 r(c - ,S) - pile - ,;112,

whe'(- I - A al( b is defined from

10 : =I+ UWIl2 - P ill(pz + AT, - g)

b 0 if Ij+ -'1 = 0

V iid+ H (,. ' + iv) otherwise.

onsei',,tlv. bl, + a-z) 0. as IJC+ W,- 
= 0 = p, = 0.

If b and c'. itre redefined to be full in-vectors by giving the value zero to all components

corrosponldi( io constraints not in tihe initial active set, we may rewrite the previous

equatiOU as

- 4iJ+ ,,'j + bTu' + l)(l' - ZTAJ I) + (b

(b - 2 1)1 (e - ,s) - pilC - .,112.

The coi litiU to be satisfied can then be expressed as

+ (w9 - zr" ITp) + (b - it)TS, + (b - 2 )T(e -s) - plc -- sI12

- I(P Z'IzTt/2Pz + 1 C + 112

and a stronger (-0i(dition on p is given by

p,)e i, - .s) > (b - c )1(, .;) + hl,n. + Pj>1'(,;- 2l,) i , )s. (5,2.3)

\ valu, p si h that (5.2.3) holds for all p > p is

IlbfJ + 211fiI + max(0. b'n±, (u.: - r.p), - (I T ,,2)1
f' e- .H -. qii *.5 211c)

I),II, l 'ti11g t,,, result. I
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We now prove property P4. As a consequence of assumption A3 and the definition of

uy, there exists a constant 3 pcf such that

<_ pcf. (5.2.5)
Ylck + W IJ

From condition CIO' and (5.2.5), we then have

pZ+ I + w0IV > LnjjZpzll 2 + I3211jpjj2 > min(3 1 , InIlp .H) IpI (5.2.6)

Defining 3 , = 1in(P2 , 3,nzH) we obtain property P4,

0 K() -/3,I11 2.  (5.2.7)

Another result that is useful in the lemmas that follow is the boundedness of the auxiliary

variable b. From (5.2.5), assumptions A1-A2 and condition ClO', we have that

Ilbl _< Ii + wcI + Il PI -,I + A TI
- ll < N'.(.2.

V + WCIIH~~A~
Regarding the penalty parameter, the same approach that was presented in the previous

chapter still applies in this case; that is, we define its value to satisfy property P4 and to be

small enough so that p/f is bounded. An example of a selection rule having these properties

is given in the next paragraph.

Let (5 = lzk4k2Hk2kPzk + II1k + w,,12. As in (4.3.11), we define the bound for the

penalty parameter by

- Pk-I if'(0,pk- I) :5 ( .k
Pk = max(fik, 2pk-1) otherwise, (5.2.9)

where Po = 0 and fi is defined by (5.2.4).

The next result establishes property P5.

Lemma 5.2.4. Assuming the bound given in (5.2.9) for the multipliers, for any iteration

ki in which the value of p is modified,

PkIIPkII < N

pk, IICk, - Sk.II -< N,

for some con.,itant N.
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Proof. It' It poalty paraInieor is increased only at a finite number of iterations, the result

follow, frilmi assulniiptlon A2, Leninia 2.4.1 and the hounided ness of 1[11411. For the rest of

the proof we then assume that there exists an ininilte sequence of iterations along which

the peIalty parlmicmtE'r is iilcreased without bound.
F"romn I.oi~i -).2.2,

,., ;t is r~ + 9 f )2\ _ ;,) ( - t, -/iV'"- ill1=
<-- , )(1,Z 1" lZpz + ]+ i',]I) + (2A -. .. p ')C -) p+c 11

and If ,.,'((0 > -F ZIllpI:, + j, + , ) tfhen. from the houndedness of the multipliers

alnd .2. and frtreii (.5.2.6).

- ,I > 2 2 + + > -2_ ,
I ;2A - I -t ' l 

(5.2.1

Frolii i Il1) ti I Is A 1 a1iI( A2, Lemriia 2.4.1. (5.2.,S) idt i hefii(itu I 5.2. 1).

pflc - .sI12 _< . 2 ,

anid fr m (.2.10) it follows that

ppl 1~l < N3. (.5.2.]1 )

Ufnder tho &sumption that Pk, - x. this result implies that JIPN- 0.

We now show that for a large enough valuo of the penalty paramiot er Pk, it liu st hold

t hat

Max (o . b/u 11, -t + f 1 -,ki -kA/k b~-Ik i 0.

If 1p4,1 - U. w0- cat h, s 1 at l16k,1l - 0. From condition C13 we must eventually have

11',k, = 0, aIid o iek, + I',-kIl - 0. Furthermore, from lenima 3.A.1 and condition C8 on

the ,niihtiphier... 1:1/k,e - Ykil, - 0. From (5.2.8) we can write the bound

IibkII !S 14k, + ,',:k,1 + 13pcfI(ij k,21 k-,PzkII + I1-'k ,- k.II),

aind Ifierefetre we leave Ilbkil -I 0.

Silice i?-'( V -). tre exists an i)dex h" suci that b, < Il, fIor all ki > K. (We

u1' strict ,omiIele, intarity at the solution.) Also, for /,1 large enough it must hold that

IN/ ,1 < ". ;a1i1 front condition C13 in thiat iteration we Imlust have l':kj 0, p :.ik ,  (1

and t',-k1  
=  {t ll imi',,

C,. + ( , k, - " + -k ) + (b

k, - Ilk I'k = Ik lk , <
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From this iliequality and (5.2.-) it follows that for k large enough,;k1 mIust satisfy

1 lbk,1i + 211,11 (5.2.12)
Pk' :::: ck, - sk,1l

In this case

pk, 11Ck - -k, - ,

and (5.2.10) implies

fi llPk, 11 - AVP ik - 5 k, II < A,

provp_4 the result. I

Proof of global convergence

The proof of globAl con .'ergence follows along the same lines as in the previous chapter.

Theorem 5.2.1. h a,'qorithm describcd in this chapt r has tlu proprty that

ki llPk = 0. (5.2.13)

Proof. Follows from the same arguments used in the proof of Theorem .1.3.1. I

Corollary 5.2.1.

lill Ilk - 1* 11 =  0.
k~o

Proof. Tih result follows immediately from Theorem 5.2.1 and Lemma :3.4.1.

Corollary 5.2.2.

lir llAk - A*ll = 0.
k ';o

Proof. Th result follows from Lemma 3.7.1, given the results in Lemma 3.6.6 and Corol-

lary 5.2.1 I
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5.3. Rate of convergence

II this chaipter we assume that our approximation to the Hessian is only accurate oil the

mill space of the active constraints. A consequence of the use of less precise information is

a degradation in the rate of convergence for the algorithm. We are now only able to show

that under condition Cl1' the algorithm converges two-step supetlinearly (as opposed to

the one-step supetlinear convergence established in Chapter -1). The proof follows the same

goiieral pat tern presented In I naptei 3.

We stait iv establishing property P7.

Lemma 5.3.1. I.'or it(rations ki in which the Ixnalty pram(t hr is incrcasd, assuming an

i.finit -((t /,cC of such itcrations occurs in the algorithnt,

imc
(1 p  Pk,1II1 = 0

lill pkjiCk, - Sk,11 = 0.

Proof. 'or large enough p, from definition (5.2.4) and the remarks in Lemma 5.2.4,

pjll - .,ll < 211b + 411I11.

Froin CoolIary 5.2.2, I1j,11- 0. IlAk,1 - 9k, fI- 0, and using Theorem 5.2.1 and Cool-
lary 5.2.1, from (5.2.8) and condition C13,

I1k1 + k, f Ilk, Zk, k, + k ,, ' k, II - 0.

0 K ! ,., l<_Ick + ,,,ckj l + II 7"- - IJ

I i "II pklIk, ,= 0.

But (5.2.10) implies

liln pk,lPk,l12  0,

completing the proof. I

Our goal is to prove a result similar to Theorem 4.1.1 for the algorithm introduced ill

this chapter. As in the previous chapter, some additional conditions lieed to le imposed. It

was Iiienitied at the beginning of the cha)ter that our interest is to study the consequences

of approximnating onliv the reduced llessiain. In this case, condition Cll canniot be enforced,

and it is ilelakced b y
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C1I'. Following Powell [Po78], we assume

IZT(Hk - Wk)ZkPzkI = o(Ijpkj[).

Note that thln condition, together with condition CIO', implies that for points close enough

to the solution we miust have

pZkk ZkPz, _ 7/3szHIIZkPz iI

As a consequelce of the use of less restrictive conditions on Hk, condition C12 is no

longer adequale, and it also needs to be replaced. The new condition does not apply to the

niultiplier estimates, which row are only required to satisfy CT-C9; instead, it limits the

acceptable values for the penalty parameter Pk.

C12'. When the iterates are close to the solution, the penalty parameter is chosen to be

"large enough".

Thi(e following results will make clear what is a suitable lower bound for the penalty param-

o t v '.

If these colditions hold, using the previous results and Lemmas 3.8.2 to 4.4.3, we can

show that the ;dlgorithm converges two-step superlinearly.

Theorem 5.3.1. There exists a value P, such that if Pk is selected satisfying Pk > P, then

the algorithiu converges two-step superlinearly.

Proof. We start by proving that if Pk is large enough, condition (2.2.3) is satisfied for all

large k. In the rest of the proof we drop the subscript denoting the iteration number.

As in Byrd anld Nocedal [BN88], we let

L(xA,s) = F(x) - AT(c(X) - s). (5.3.1)

We can now use a Taylor series expansion to write

AL =_ L(x + p,A,s) - L(x,A,s) = 9 T ATAp+ lpTWp, (5.3.2)

where IV = V".r L(x + Op, A,s) and 0 < 0 < 1.
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Rearr,,:-ging terms.

AL = i (g - ATA) + p7zZTg + 'pTZTWZpz + ( Ypy ± Zp2 )TWYpv

Y pT( 9 - ATA)+ apZTg + -a)pTZT(W - JJ)Zpz

- (1 - a)pTZTHYpv + (-YP, + ZPz)TWYp,- (-1 - a)p TZTWZpz.

Assume now that k is large enough so that IIwH < 2111*1 = 3*, where IV* indicates the

Hessian of the Lagrangian function at the solution, and also that the bound pzTWZpz >

3,zjjZpzjj2 holds. We may rewrite condition Cl' in the form

WT ZT( w'k tlk )Zkpz, =Wk 11ZkPzk lllPkl,

,here 1-'k - . Consequently
_Lt < pT"~ T T- + OrpzZ 9 ( g

-(g - A - ) - (Zp 12

+ 3*lI~p-1 2 + ((1 - a)(,3 jH + W) + p3) ZpzlillYpi.l.

For k largc enough. there exist positive constants a,, a 2 (e.g., take a, = 2(1 - a) 31H + 3*

and a 2 = -(- fbzH), such that

AL < pT"'T(g - ATA) + cpTZ g + PtII1py-l 2 + ailIZpzfllYp,-I - a2iiZpz 11.

We now study the iw-rit funcion (2.2.1) at a = 1. We can write it as

() L(x + p, A,s) + (L(x + p, I,s + q) - L(x +p,A,s)) + 1pllc(x + p) - s -q11 2

- L(.,A,',,) + (AT(c(x + p) - s) - /tT(c(z + p) - s - q)) + lpI1c(x +p) - .s - q112

pT,T(g - ATA) + pTZTg + -.fl*11pyjj + a, lZpzljjjYpyjj - a21lZPzII'.

Using c,(x + p) - qi = PTv2ci(zi)p, where zi = x + Oip for some Oi E [0, 1], we have

0(1) = 0(0) + pTyT(g - ATA) + apTZTg + gTq _ 7.ipTV2 ci(Z,)p _ p1k _ SI11

+ 2 pZ(TV c(Zi)P) + a, IZpzlIjiYpII a2 1ZPzI ± *

<_ o(0) + 0'0'(o) - OpT,1Ty - cr(2A - ju)T(c - s) + ATq + prY, rt - ATr)

p- - p - s112 + a',llZpzllIYv II - a'IIZP2I112 + X111,.lI112,

where we have made use of Lemma 3.8.2 and the facts that k 0 and the second derivatives

of the constraint functions are uniformly bounded. This result holds for large enough k,

and positive constants a I a' (again, take for example a' 2a . a= 2
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Rewriting this expression, we get

c)(1) - (() <_ aO'(0) + (1 - -)pTYT(g - ATut) - (1 - 2a) T(c - s) - (1 - a)ItTq

-( -)c - ll + a IlZpzllllYpyi - a'IIZpzlI2 + )3*llgp yl2.

From Lemma -1.4.3, condition C8 on the multipliers, and selecting k large enough so that
J1Tq = 0, it follows that

11g - A TtilI -< 311Pll

for some constant 3. Finally, we can select p large enough so that for large k,

-(1 - 2or)T(c - s) - (. - a)pIc - s112 < - . - a)pIIc - S112;

for example, let p be larger than twice the bound given in (5.2.12). We thun have

o{) - o(0) < c'(0) - I!-- )pllc - S12 + a,'lZp2 llllYpf - a'IjZpzll + a3IIpYI,

where '" = a' + 3 and a3 = + /.

Assume that k is large enough so that p is obtained as the solution for the QP subprob-

Iem, th correct active set has been identified and pc, < Ai for all active constraints (this

follows from Lemma 3.8.3). From (5.2.5),

IlYpO-I < O3a ill < 0l Cflic - Sf1,

andl

o(1) - o(O) _ aO'(0) + (a3 - __ _ C)P)Ile _ S112 + a'"IIZpzIIlic 11 - a'IIZpzl 2,
where a' = 3pcfa I and a' = /ipcfa3.

From the arithmetic mean/geometric mean inequality,

a;'lz~IZlll -g < I(11zpZlf2 + - Ic- sl ), (5.3.3)

we finally obtain

+( 1) +(o) < o+'(o) - i '+=flZpzl + (a3 + I  - i2(i - a)p)llc- s1 . (5.3.41)

If p is chosen so that
4aa'al + 2a' "

(1 - 2or)a'
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then the step of o 1 will satisfy condition (2.2.3).

Finally. applying Theorem I from Powell [Po78], we obtain the desired convergence

result. I

Most o I he proof for the previous theorem is devoted to showing that a unit stoplenrgt I

is e-ent na[l acceptable if the penalty parameter i, sufficiently large. (Clearly, the proof

given here still holds for the algorithm presented in Chapter -1, and this gives a second set

of alternative conditions for sn perlinear convergence, where tie condition on the multiplier

estimate C12 is replaced by a condition oi the penalty parameter C12'.

5.4. Summary

lit this ch i ) we have st udied i an lgorithm simiilar to the one presenited in Chapter -I, but

where th, con d iti os oil thi', approxi mation to the Hessian have been relaxed, so that now

oiily tihe app roxiliiation to the reduced Ifessian is required to be positive definite.
"Fit(, results oltdairied have been:

a Under conditions C1 C9 on tile search direction and multiplier estimate, and con-

di!tion C10' on the approximation to the reduced Hessian, if the approxi mation for

the rest of the Hessian is assumed to be such that Ilk is positive defilite, then the

alg,,ritlliii is globally corwrg( o.

* At al tern ative algorithn has also been shown to be globally coflrvrgent, where no

assimitio is made about the Hessian approximation outside the null space of the

active constraints, but requiring the additional condition:

C13. the initial active set must be selected so that there exists an (" > 0 such that

if Hjp/k < (", then the active set at Pk is the initial active set.

e Vi nall, we have proved that the algorithm is two-step supc rlmarly con ccrgrnt if in

addition tie, following conditions are satisfied:

Cl '. - 1 ( Ilk - Wk)ZkP, 11-- o(IlPkl).

C12'. \Vhen tile iterates are close to the solution, the penal ty parameter is chosen to

he harge enough.

Note ti at when no conditions are required on the approxiniation to the lessian on

subspaces othier tiian the rill space of the active constraints, tie algorithii leaves open tlie
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possibility of' using an approximation scheme satisfying condition Cl from the previous

chapter (instead of condition Cl'). This would allow the algorithm to attain a one-step

superlinear rate of convergence.



Chapter 6

Exact Second Derivatives

Ihi- cih;1o,,r coI idtii ra . a third variatt of ihe fraitnework algorli prii .-i'nte d it (C'hspler

2. + 1a )l1tl -,olttion for the, (211 siuhprobletn is u(,1 a: the ,varch dire(tion. hut III

li ua-, I ,l lle,siati approximatio, n Ilk is taken to be tle (xa(t llessia., of the lagraiiar

ti tii(ion ,tl th , last iterate. I hat is

Ilk =V3 V l. Ak) = V "2 (x) - Z1 Ak,V 2 ,(xk).

whe're iti- )%Il and even the reduced lessian Z
T
IIkZk, a" he i tieftiite.

There ,,re, witnerous theoretical aid practical benefits deriving from th, ex)licit use of

sco(id deiivaliv es. tVor example, it will be seen in this chapter how to define ar algorithl

etieratin, <i iquence t hat converges to a second-order KNT point. Aiso, in practice it has

heii observed that second-derivative methods usallyv, converge in inuch fewer iterations

thatn those required by first-order methods. However, the use of second derivatives presents a

1l tt her of ,,cllh cal difficulties, all of which stern from the loss of control over tie propertiehs

of Ifl.. In order to reap all the benefits from the availability of second derivatives, we need

to redefine t lie way the search direction is obtained. In all other respects the basic pti cipes

introduced in ('hapter 2 will still be preserved.

The ixI et iolt presents the defintinion of th(, incortipfet, solition for the QP subprob-

letts, to Iw ,sed as the search direction in each iteration. The rest of the chapter proves

global conveigtn<e for the algorithi, and shows that under mild conditions the algorithit

(onverges II tad ratically.

95
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6.1. The - arch direction

T', delinition of tile search direction given in Chapter 2 needs to be modified for tile

algorithm pr ented in this chapter, to take into account the possible lack of convexity

il the Isub problesl,. i mplying the possible indefiniteness of Ilk and rank-deficiency in tile

reduced l,.,ia nt.

n the ca(, lenll the hlessian is indefinite, tho descent directions that can be obtained

frotm the Q P subproblvils may no longer provide enough descent to guarantee tile conver-

,,,' 'ce of the alorithill: that is, the quantities o,(0) may no longer be sufficiently neative

to ens ire t liat O, -- Ok+l satisfies tile condition used in tie proofs of Theorems -1.3.1 and

5.2.1. li, this.vction we present a procedure to generate search directions that eit her .iw,

*,ilficien t o >e ,t. or are directions of negative curvature (satisfying pITll.p.. < 0) a}!jowilrg

a situficri t dkla( e it lth value of the merit function to eniisure convergence.

lie I I'(rc ii ['(ti(t is derfied hy the following steps:

i u ()laiz a feaiibl, initial point pn for the QP suhproblem such that conditions (2.2.6)

and 12 i-7) ir, satisfied.

(ii) Solve the QlP subproblem until a stationary point ' is found, or iinil a direction of

infinite descent d is obtained. The convergence results presented in this chapter do

not a. tlhi, be use of arty specific QP algorithm, but the following conditions must

be sIti ilied by the method selected.

* It must be an active-set alpriothni, taking feasible descent steps in each iteration.

If tvps having a positive directional derivative for o = 0 are taken, tile total

, ,>ccit must be uniform ly bounded away front zero.

* I1 must be able to find a stationary point (or a direct lion of infinite descent) in a

tiltrt ber of iterations uniformly l ounded by a function of tile size of the problem.

* Fa;tl Q P iteration must prodtce a mniimurm descent, unless we are at a stationarv

pttit for the QP subproblem. To be more precise, let 1) denote any i nterniediate

ii t aling the sol ntion of th QP subprohlem and let d be the QP search

di ectint at p also let rV indicate the step taken from p along d, obtained as

tit initii of the steps to the rnidimensional minimizer. the nearest inactive

t rstraint and a specified upper botid, in the same spirit as in the definilion of

o giwyen ii condition C3. Finally, !et g, denote the projection of q + lp onto
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the mill space of the active QP constraints at p. We require that d satisfies the

llo iiig coiidition:
'(p) - '(p + od) > 3qpj.jJ1

>o/i qplIY]I,

where 3w d is so0 positive colistant.

hl reason for this condition is that it prevents the algorithim from taking Steps

that ,ive arbitrarilv small descent unless 11g,11 is small, that is, the point p is

co.,(, to being a QP stationary point.

iii l)efiii, ) from i or (I as follows,

(a) If a direction of infinite descent d satisfying (6.1.1) is obtained at a point p along

Ht oliltioll of tile QP subproblem. defiine

Sp + ad.

f, it > 0 is choseii so that 1I lj is unifornly bounded above and below.

I, If 1) i> a second-order KKN' point for tlie Q P subproblem, let

O) ()lhwrkvi~., select f) by computing a direction d and a steplength o satisfying

'oititiors C1 C6.

-1 I lit tlo twilig coIidition is introliced to ideiti tie circ! instances under which near

siguliritv iin the reduced Hessian may he a problem:

C 1 4. JIe--i < f I, and
0'( mn) - ()) <

Ilpo -/fll

If C14 holds, obtain ant estimate for the active set at the current point, .k, and

'itlute ,a direction 1) by taking a step wd from pj) satisfving C1 C6. If no feasible

'11p sattiFv"itg t hose coiiditionis exists. let p - Pi.

(%,) Slo t I th ,elarch dirittirn + as

I-) if i <i) Ct(p), C14 does not hol, or p = p,

) { it herwise,.
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Several ie iii irks are in ordler regard inrg t he defi nit ion of p. ( oridit ion (6. 1 .1 ) cou)hi be

rqplace(I bly Ili ;Jterriat ive coitionl

w hich iiiav provide a b~etter expression for the statedI goal of linking tite lack of dlescent

wlvvlalIloflm titecey h eeto f(ietoso eaie

w int v tI eur tte lip)ec actiese a iterb satio;nt: lint sois

be ilenili~l.('wer ondtion (6.1.1), ant estimate for tis active set hiavinug the dlesi rv(l
1)rlwrl(- , -,!e~ibYtheQ1'actveset at the initial point for the( first finite Q11' s;tvip (lte

Ow a-s whit issmal tis s sraight forward. For thle large-scale case. efficienit rret hodI

are knm hnttr~uelHessian is not too large. Although some work has heetn

cariedoutFori~rbloiisofarbiitrarv size, see for example Cornn anri Gonid~ (CG84], such

metodsar no veY i'lciet.Our hope is that satisfactory methods for compluting feasible

(Iiirect ions of iiegat ive curvature for arbitrarily large problenms wvill be (Ievelope(1 in the near

future. If a direction of negative curvature is not determined., the 1)roofs would still hold

if we characterize s;olution points to be first-ordler KIKT p~oints for the p)roblemf (insteadl of

Sco(li-order I. Ki polints).

Properties of the search direction

As in ti l~i evious chapters, tile ftirst resrult requiiredl for the convergence proof is to show

th at if Ivpj 1 ri ! enough, thle correct active set rmust have been idlentifiedl. We start liv

introd icinrg ;I,:~lw y constant, ii phie(l bY the non-si ngu laritv assli r ptiont A6G

.3"'11 is p 1 - ,lower bou11nd for the smallest eigeruvalule of the re(I icedI 1Hessia n of the(

Lagrami ri-, ction at all secon (I-or(Ier RhTr points for the NI LI roblen li ri.

Pie foi .1ie lern ra est ablishes lirope(rty PI for this algori thm.r

Lemima 6.1.1. T ( rxj.sf. an ( > 0 .iuch thiat I II)II < ( imijlics thati j) was1 obtafiimid (is a

.sK'rd-ocd( i A'A / )ojit of tli( QI' slubJprol~in anflIic cort act ii, so1 has i*ccn i(I( dif(I.
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Proof. l'h c rect idett ificatioli of the active set follows from strict coiplementi-rity at

th, :.litmll int (see proof for Lemma 4.3.2).

A .-tllll hat the lenttiia does not hold, in the sens, that there exists a sequence {x.}

rich Ilat .Ik - d7* and hJ:Pk - 0, where p. denotes the search direction obtained for the

Q1 sri hjl r l lein lt X'k il the form described in the previous section, b)ut Pk has hot beeni

Obtained at., a >econd-order KKT point for the QIP subproblem.

It 1)k - P, irld Ifrk > (, for an i nfinite subsequence and some , > 0, then as Jk niust

be feasibl,, we iii rst have Ilc 11l - 0. Also. as tk(Pk,) - 0, we multst have ',(/1fk ) - 0.

From'in this ld colrditiml (6.1.1) it niust follow that x* is a statioiiarv point for the NI,I)

pI0bi j. -1vi'l that it is feasible and in tie Q1 subproblem we have no desceent when taking

a itloiizro step frt)lmj thre origill to a stationary point.

If .7 1, a -ecoind-order 1K KT point, eventually P = Pk,0 and )k = Pk If x* is a stationary

poillt hiItl nt a, >cold-order Kl I1 poilit, for 11'k. - r* I smiall enough we call find a direction

dt,. and a ntleii'tt Ik such t hat NO + (t,.fk is feasible, as flip ,,[ - 0 and tile informationi

ll,(d is asyiiiptoticallY correct. From the bound given in (..3.1) and condition Cl.

,(k< > 1 ,3". !ld ll >! J,d-+

inlplvitig; that

Il1pkWl = flvk0 + ,k(Ikl1 > j',Gd.n

I owever, tIi> (iContradicts o r huypothesis.

Assiunue now that Itfkfl - 0. From condition C6. this implies 11kll - 0. and from

Lell iii a 3 .:1.1 we iistI have that x* is a stationary point. Smppose x* is a secon(I-order

KNT 1 poiit , The St srict cotnpiementarity at .r* anld the fact that 111411 - 0 i mplh that

tlh correct active set is evttuallv identified. Ileltce, froni the positive definuiteness of the

redlrced l,-ssian at X*, we must have that for large enough k, fP& is a second-order KKT

point for tie QP subproblem.

If * is a stalio ary point, but not a second-order KKT point, using the bounds given

in Section 1.3 anid assuming Ix. - x*ll to he small enough, we can find a direction dk anid

a stepleiigth (q such that

Ok> +q' ?dk/J - 1,4,

itrip11+tig I i1An]

!t-t I/i'k + (tk(I1_> i Yt ' t.
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Again, til is a (o t radiction. I

As ill ptrevious chapters, the proof proceeds by showing that property P3 holds for

this algorithm, that is, the search direction computed according to the rules introduced in

Section 6.1 satisfies a descent condition.

In order to prove P3, we need a preliminary result. In Chapters 4 and 5 it was possible

to show that

k( 0 )- ''k(Pk) - 0 =lP 0 - Pkil - 0,

usiing tile positive definiteness of Ilk. or of ZT1.kZk at least. This argument is not valid in

this ca'se, and we give an alternative proof for tile result in the next lemmas.

In the following lemmas the notation {y,1 = is used to represent a subsequence from

the sequoence of iterates, {y} C {xk}. The symbol cm denotes the vector c(y,). Hin

corresponds to the Hessian of the Lagrangian function at yi, and pm indicates the search

direction obtainued at y,,.

Lemma 6.1.2. If the concrgent sequence {ym}, ym - Y*, satisfies 1c- 11I - 0. it must hold

S'm(Pm) 0 IpII 0,

wh( re p,, (il. otes the search direction obtained from the process described above. Also, y*

must be a stationary point of the NLP problem.

Proof. Assume that the lemma does not hold, i.e., that V",(p,,) - 0 but I[P-,II - , > 0

for all in.

Since the norm of the initial QP point goes to zero (Ijp01jt - 0), condition C14 must

hold for large enough in.

To show that y* is a stationary point, take a subsequence along which the number of

QP steps is fixed (it is bounded), and all intermediate steps converge to limit points; in the

limit all sleps give zero descent, as -'m (flm ) 0, implying that all intermediate points, and

in particular the origin, must be stationary points from condition (6.1.1).

Assume that g* is a second-order KKT point, and that a set of limit points for in-

terine(iate steps has been obtained as indicated in the previous paragraph. For the first

non1zero step from the origin d*, it must hold that j d*I > 0, as otherwise we would have

*,rZ*'llZ*d* = 0, contradicting assumption A6. But then g*Td* > 0, violating the firs:t

cotidition iipOs('(d on the QP solution method.
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It follows, that at y* there exists either a direction of negative curvature or a negative

multiplier. Si lie p ,, - JL* (the Jacobian of the active constraints at y* has full rank), then

fromi the boun ids introduced in (.1.3.1) and Lemma 3.3.2, it follows for in large enough that

- ( ) M 3 1(1% l 0 -Sp"

wlieii there exists a direction of negative curvature, or

when there ,xist, a negative multiplier.

(ousequeitly. in either case c,(p, ,) is bounded away from zero, which contradicts our

assuliptionl. I

Lemma 6.1.3. Ihi n xist, a constant f, > 0 such that for any qucnce {y,} satisfying

I f- ?r( L inii t Ii(

rn ) - t'm(p m) - 0 1p,, Pr, -0.

Proof. Assuelie that the result does not hold. Consider any sequence {( }, such that (j - 0

and i < (I. For each E , we can construct a sequence {y'} _ {y,,,} such that Icl-1l :S i, for
all 1. yl - y* as I - )c for all j, o)- t.2 p3 ) -- 0 but 11pil0 - 7), > bj for some 6. > 0

for all 1. F'inailly. we can assume that y* y*

Froin the previous properties, conidition C14 must hold eventually for any of the se-

queices. Select one elemient from each sequence y y3 , such that for that point C14 is

satisfied and y - y*. Then from the previous lemma we must have that p3 - 0 and y* is

a stationary point of the problem.

(sing the same arguments as in Lemma 6.1.2, if y* is not a second-order KKT point,

then at * e will have either a direction of negative curvature or a negative multiplier.

a lt since t,- p* (the Jacobian at .* has full rank from assumption A3), and a similar

propertY holos fir tle reduced Hlessian, we must have that

i2a (Jio ) - i.'j(JPj) > - L,3i n ( 2  ,- m , ' /9 i].,pn),- 32 J

(olit rahI uti lip, oul. i-,sil:)t iOll.

If y* is a second--order KKTI3 point, then consider the sequence { . or this sequence

and for j larg, eiough. P% (tle initial point for the QiP sul)roblem) must be a second-

order 1KKT liir. This follows from conllion (6.1.1), implying that all P *must be Q P

=, mmmmaat i n mil I



6. 1. Thc suarch direction 102

I, i, el a rv tpoi its, and from 11 * 11 - 0, the identification of the correct active set from

,trie coiiileun(itarity at y* and assumption A6. But from arguments used in the previous

]en I a. li lacl that we have no descent from P* implies that the reduced Hessian must

be singilar itt 1)j,, for large enough j, and the reduced Hessian must also be singular at y*,

Contradic ligy asstumption A6. I
We can now prove property P3 for the algorithm.

Lemna 6.1.4. l rc (-,xist constants .3, > 0 and i32 > 0 such that

T I +
gkpk + kIlkPk <_ -31II+ 2kr r+ l- (6.1.2)

Proof. l)'tine satisfying ( > (,, > 0, where is tie value from Lemma 6.1.1, and such

that < , implies that p is a second-order KKT point, the correct active set has been

idnitiod, a ld the smallet eigenvalue for tile reduced lessian is greater than .,3,1.

Also. froil leniia 6.1.3, let b > 0 be the value such that, if 1- _ <-.

Itpu - Pl > 1-, = '(po) - O'(p) > 6.

l)efi Ie
/ 6

2(i3 ning + 3 itmjl,nmp)

having tit(, pr()t''ty that Ilpol -< d implies IJ'(po) <_ < 1 . Select

( 7 ,

F.roi condition (2.2.6) and assumption A2, there exists a constant 3,,,p such that

ilipoJ < 313cjll </ 3<n,p.

One of the following conditions must hold:

0 VIrj > (I . From tile bounded noss of lpo ll wo can write

1) gT I T i 
3 

y+~ 1nIt1~f~i
'.'(p) g p + 7 1 lip S 01(po) + 113,,,11, nip)

< - 2 fl;1I + 111"fl( 31)nip + 2nmy + ;3nrnIjmn.p)jjrI.
(I



0' ~l < and 11)1 '>f . This Im)leCs 111)u11 lip,,(, and lt',(po)l Al Xso
22

OpIo) - O~p) > => i(p) < -- l => LjP) < t3 111)112.
2 urn p

* hjrj < a iid jipli< , [it I his case, as p Is a second-or(Ier K NT point for the QP

Y p+ p =: -C itp < :3"',ulc <I 7-nnII

1 igthle iiutatjil . p =- J - 1po.

/)TJJ/ =)pfI1)o + 2..\p'11p0 + ApT!! Ap

>-3,7,13J 71112 - 2,371,15,ii I II Ahl + ~ iI PI

and from tie dit Ii iet i C fivd /geomietric mean inequalitN.

21i-1 %li <~P ' ''C3jj 11r112 + " t'sl3 nl jjApMj 2 .

/) 7*ffJ > -!3 lljApjl2  2 ~nlpc (I + 'l3,l 1r 112.

The iniequialit ies

1 11/)112 < _111_\P111 + _1Il0112 + 1IA1111101I IIAPI12 + II1poI12

iliill that we Cal) write

ISpc(3nrni( + *l3rst) ± 1

Pulii t i all these rostidIts toget her, we have

~.( ') hu~u I I J)Tf) K - jtjj 11/)11j2 + (.Ly '3' .. ..... )11 l

(()iiillellili I liv proof.
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6.2. Definition of the linesearch

s a conseq([tL(nc of the way wo have defined the matrices Hk and the incomplete solutions

for the QI' sul)problels in this chapter, the search direction Pk may no longer be a descent

direction. but rather a direction of negative curvature. The linesearch model pr,,s ntd in

the previous chapters is not adequate for this case. We can no longer be assured that the

directional derivative at the beginning of the linesearch is bounded by a multiple of llPkII 2 .

The structure of the global convergence proof would then fail to hold. We need to modify

the linesearch model introduced in Chapter 2, and we will do so according to the ideas

introduced in McCormick (McC77. and further developed in MorS and Sorensen [MSS-41.

'Fle l)roblein considered in [MS84] is that of minimizing an unconstrained function when

in each iteration a direction of descent v, or a direction of negative curvature w, or both.

are avail,)ble, The qearch is carried out along the curve C = {x(a) :x(o) = x + ctw + a 2c},

and the termination conditions when the direction of negative curvature is available are

specified in terms of the curvature at the initial point. In our case we generate only one

search direction Pk for the original variables x in each iteration, but the search on the merit

function is made not only in the space of the original variables, but also in the space of the

Lagrange multipliers and the slack variables. Whenever we make use of Pk as a direction of

negative curvature, we need to define not just one search direction but both a direction of

descent and a direction of negative curvature in this expanded space. If Pk can be treated as

a direction of descent, we prefer to avoid the complications associated with the curvilinear

search by reverting to the linesearch model introduced in Chapter 2.

The next paragraphs present the definitions of the expanded directions for the curvilinear

search. To motivate them, we start by studying the form of the derivatives for the merit

function alonE the curve C'. We define the unidimensional merit function along the curve

of search, 0' . starting from the point y and moving along the vectors

A , = t= t2 (6.2.1)

as

of (o) = L(y + a 2 v + ow) = F(.r,) - ' (, ) + poc(n),

where

SnI - Ic(X) -
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02C(a) = 11c(X-) - soi1.

To simplify the expressions that appear in the analysis of the different functions related

to the merit function, we introduce the notation

X £X+ a 2V +aw,

A, A + a 2 t, + at 2 ,

8a , S + 2 U 1 + au2

In the case when a normal linesearch is performed, the value of the merit function along

the line of search will be denoted by 0'. This linesearch can be viewed as a particular case

of the curvilinear search, when z' = 0, and in fact for the definitions of the vectors ti and

u, given in this section the form of the search directions is identical if we let w = 0, but it

must be noted that the termination conditions are different in the two cases.

Our interest in what follows is to assign values to ui and t, in terms of the known

quantities at the current point; the definitions for v and w will be specified later as a

function of the properties of the search direction Pk- In order to identify satisfactory values

for these vectors in the curvilinear search, we need to study the form of tie first and second

derivatives of the merit function at zero, as these are the values that will be used in tile

termination criteria. We start by forming the corresponding derivatives at any point. The

first derivative is given by
CO C/

0"(a) = VF(x.)T(2av + w) - €f (a) + P0(2),

where

=( 2 a, + t2 )T(c(xk) - s,) + A T(Vc(rc )(2av + w) - 2au-

and

c' T(V("

2 (a) = (C(Xi) - S- )(2av + w) -2Ul- U -

For the second derivative we have

,c"(,)= (2av + w)TV 2F(x,)(2av + w) + 2VF(x,) T v - Oc (a) + po" (a),

where

C" )T
( 2(2at1 + t 2 )( Vc(xj(2av + w) - 2ul - u2 ) + 2t7(c(XC) -

+ Y,(2Vc(x,)v - 2ui) + jA,,,(2av + aL)Vc~x)(2av + w')
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andl

IlVc(x.)(2av + w) - 2aul - U2 112 + (c(xc) -
- ui

+ Zt(Ci(Xa) - s,,)(2av + W)TV 2 C,(X )(2av + w).

As we mentioned earlier, we are interested in studying the values of these derivatives

when a = 0. given that the termination criteria for the linesearch make use of these values;

their form will determine the definition of ui, ti. For the first derivative we have

oC'(O) = gTw T - - T(ai. - U2) + p(c - s)T(Aw - u2),

and letting

U2 Aw, t2  0, (6.2.2)

we obtain

oc'(0) = gTw. (6.2.3)

For the second derivative,

OC"(O) = wTV 2Fw + 2gTv - 2tT(c - s) - 2tT(Aw - u2) - 2A T(Av - uj)

+ Ei (p(ci - si) - Aj)wTV2ciw + pilAw - u211 2 + 2p(c - s)T(Av - ul),

and after replacing the expressions for u2 and t 2 , we obtain

oc"(0) = wTV 2Fw +2gTv -2tT1c - as)+ 2(p(c - S) - A)T (Av - uj)

+ Ej(~i- si) - Ai) wTV2ciw.

Define

ul= Av+c-s+w, tI p-L , (6.2.4)

for some vector w to be defined later on, implying

oc"(0) = WTV 2 Lw + 2gTv + 2(2A - p)T(c - s) - 2plIc - s11 2

+ 2w T(,\- p(c - s)) + ,p(c, - S,)wTV 2 cw. (6.2.5)

To make sure that the last terms in (6.2.5) take acceptable values, we select w to satisfy

p ) 0 if (C, - s,)wTV 2 cW < 0, IwTV 2cwl < Ic, -

or Ei( - S,)wTTV 2cw < Ilc - S112;
-P - p(c, - si otherwise.

2 Ai - P(ci - si) ohrie
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1 - A, - , .,)Is 'ery small or zero, ail thie first set of comldit ions does niot ap~ply, this

dlefi titionlii 11sat isfact ory Ibecaise )iis either idefiine(l or i accep~t ally large. To) avoid

Oli prohblei ii we miodi fy tilie cii rrent valuie of p, attemptinig to at tai ii two goals: we wanit

ihe iiew %-ale f Or j). saY P. to he bon nded by a finite miultile of its existig v-alue, ani(l we

W\iit -1to he blliied bya ult iple of I I2*We start by iiiijosi ig the follow~ig conidition:

P C - Si < K (6.2.6)
2 Ai - p(c, - so ) -

for some It > 1. .Note t hat this houind implies that our secoiid goal. jj fl = 0(1 it jl ). is

attainled.

Wc nIow -how thIiat ouir first goal can also he achiiev.edf. If t lic- prevJius (:0m(1it ion is riot

Sts1 ior I t tt rii valule of p. thenl we niu1st halve

SA, -I K (6.2.7)

aiil for t hat to holdl it mus-t also he true that Ai(ci - si) > 0. so we can write

A, 2K At 2 K(62S
C- ,si 2A' + I< ci - si 2K -I' 628

huit if p is III this iterval, theii

2A' +t I p> Ai 2A'(.2K
2KA'-1 ci - -si 2K -I' 629

arid iii geiieral there exists a x'a-lie

P, j 2+1)' (6.2.10)

for which (he disre(1 hounfd onl ,; holds.

\\'ith t hi.s lefimition,

-2pi~c - sjj2 + 2- ( A - p(c - s)) + Zip(c, 1 u 7 ~ i Pk-.l2

Negative curvature and descent

noiow presenit the ruiles to (leci(le how to select the linesearch model uisec ini each iterationi,

aid( if lie u viliicar sea rch is to Ibc usedl, how to (Jefi ne the va ites for I, anid w. Onice filie

sea rch (fi rect iou p has been cornpiitp (I , let
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a) c t, = p if p"tlp < 29 Tp 0,

b) 1, (= + ,)p, = --yp if pTHp < 0, 9Tp> 0 and - pTIp> kgTp,

c) i, a norma! linesearch otherwise,

where k is a constant satisfying 0 < k < 1, and -, is defined from

k = 2 (2+ 1)

The convergence proofs xmake use of several properties that follow from the definitions

of U arid it'. If we define

p 2gTt,+ wTHw for cases a) and b),

f 2gTp for c e c),

then for the di fl'erent cases,

a) f =)llp < gTp+ jp'jp,
P) f, = 2(-t + ) + T2pTf p < 9 Tp _ (- )pTf p + -Y2pTp - gTp + 4pTI1p,

c ) < Tp + -pTttp if gTp< pTHp '

, < - 2g'p + pTjp if 0 < pTHp < 2gTp,
fj 2Tj) < 2gTp + 2-k ( kgp + pTtp) = 22k(29Tp + pT p) otherwise.

From (6.1.2) and these results,

fp < Hil (-3I 1pl 2 + 321lrl, 2 _ (-A11pl 2 + 21r17i)) - -_0111p112 + 4321irl1. (6.2.11)

A second useful inequality is
fp < 2grp, (6.2.12)

following from one of the alternative cases

a) fp TlJp < 2qTp,

h) L 2 
2 (-j + 1)g9p + f2pTjfp < (2('- + 1) - ky2)gTp = 1(2 - k)gTp < 2gTp,

c) f p 2 T)p.

Another interesting property of the previous definition is given in the next lemma.

Lemma 6.2.1. Thurc exists an (,, > 0 such that if Ilpkll < (d, then a normal lincscarch is

U.SCd.

Proof. Assimlne that the lemma does not hold. Then there exists a sequence {xk., and

an associald sequence of search directions {Pk}, such that Pk - 0 and Pk satisfies the
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Co>Ildit lii,> 1y Uise. a) or b). \Vithout loss of generalitv, assume that the sequence {xk} is

(oilenwrelit. and let I lie init point be x * a second-order KKT point for problem N1I.1 , from

ieninta G.1.1I.

1)efi hO a ,new seqiuence of vectors {Vk} from

Pk

Sild select ao ,i(ivegelit sunbseq ionce where either case a) or case b) holds for all k. (The

idex A wili is() be llsoed to denote the elements in the sunbsequence.) Let v* be the limit

p)olit fb-r t11 silb ,cql(lelcf..

From tl, <o<i(,itliifis for cases a) and 1)).

111k1)+ > k" +ki => ITtH'l >kg l

and iII li cillil "*v* = 0. Bllt this implies A*KT:I*i,* 0. and frot strict iomplelwi'ltarity

V" w .ao ;k \V, il>+ haive

V k P/flk.p). < 0 -L I! I1 *f* < O.

hilt thii ciitl/tdi I-, lw fact that we imist have a stronlg Miniimizer, from assum)tioin A6.

ploviig te reslt. I

I'hiis re>ull allows ,i.. to definie the followinig ciStiallt. Fr()m li .Clo,,as (;.1.A and 3..

&,:s,]npm]i+ A6 anld L~emin~a 61.2.1,

, is a ji(O itij I <listaiit suh, ta;t )l/k< , ii ,es that Pk- h;s been (ubtained as a second-

(rder K K-I p01,it the <correc<t active set has beeli identified. the smallest eigenvalhe of

tle rducd w essia Is at )east 2 / and a normal Ii niesearch is used.

Finially. iote that for cases a) an(h )). o'"'(()) < 0.

Linesearch termination

Wl,,ni we use tlie curvilinear searchh, it may no longer be p)ossible to satisfv the terminait 1

colidi los iv,', foir tihe normhal linesearch inI C.hapter 2. (2.2.3) and (2.2.4): c'Omise',tl.

hev ,ii if) btoe replaced. Satisfactory termination criteria of a similar type to those give,,

mi ('hiaptir 2 ;j,, now preeinted. A check is made whether the (,,condition

Q'( I) K 05"(0) + ,7' (0) (6.2.13)



1 )t ]iiiition al id p~ropcrti(.s of th( Im nlly 1mrim~r tcr 110

sit ~h I he ,tep o - 1. If not, then a value or E (0, 1) satisfYing

Qc'(0) 1,('(0) ± o(0()) (6.2.111))

fb iv > 'T :> 0 a 111 > (1. is comnputed as the step) length. 'The( existen ce of a value n

-ill .1viig 6.2.1 1 ) will be shown in Lemma 6i.3.6.

lriinli I h defitlilt inns. of 1' and w,. wheni case b ) applies the formn of the step Ii the original

V C Vii % (1(( 1 + )'i~ p. A consequence of this expression is that for a v'aluie

1+4-

ii Ili Il h r variables. Tholigh this step has no effect onl the convergence

am -t; mrkr finlite chlanges Ii the other variables). such a step may

11ii tsfilctirv from ia practical point of view. We presenit all alternative

2(1 + )

II hL.IIlV. ii letI oi I oit lerwise. check (-oind i Iillt (6i.2.I1.1a) for (1 6

- I

o(6) < c)'(0) + (7-y0 (0). (6.2.15)

If 1his widit inl Is lint satisfied either, compute a value o E£ (0. tik) satisfvin g (6.2.1 1)

6.3. D~efiinit ion and properties of the penalty parameter

1 4 l) -Ili il l,( c( )n (I venco* of t hie algortliill . vach step muntst sat isfY at sutfficient descent con -

dfli iit. 'I I llllif# theo lived to select thle penalty paramneter iii such at way' thatt lilt, initial

flit]vat v IlIi interi funict ion (thev (ilnt ities hounding the dlescent achieved inl the Ilie-

'Oailid tlk'i 'nlcept ahle valuecs. andl inl pat iciflar, property P4 (suit ablY extended) holds for

lilt,uuit 1,. i 1)(1 whenl Ile normal hiniesearch anid when t he ciirvilinear search are iised.

IIiho niuxt f)Iril'ia lphs Indicate a wayt~ inl which this can he done for hoth i cs. andl the rest

(ff t ho f((I ill pr-)-nts Ilte prort Ies assmciateul wit 1i t his ulefi litio011.
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Definition of the penalty parameter

When trying to show that property P4 holds for this algorithm, we face an immediate

complication. There is no longer any quantity readily available that provides agood measure

for the hlin rd J 1il'k 12 on the initial derivatives for the linesearch. For example, the values

used in Chapters -1 and 5, pTIUp and pTZTI!Zpz + Il + w,112 respectively, may not even be

positive. Consequently, we introduce in this section a definition of pk based on the value of

the penalty paraiieter that makes the corresponding derivatives zero, with the addition of

adequate a fe Iards.

Let

T )- I 2 \ - p( - s)) + Zp(c, - .s,) w rV2cw for the curvilinear search,
0 for the normal linesearch;

illid

fp + 2(2A - ,)T(C- s).

From (G.2.1 I ).

f -,I, tIpII + 32 tic - sit.

heewe ( l il.'.>nrrit That .1, > 1

Definle /I i 11

2"[ if T > 0,
ie - LS112
i - otherwise.

1C - 5.112 if>0

Let o- denote the value of the penalty parameter at the previous iteration. If p- = 0 and

/K < 0, replace fp in tile previous definition by f, + 3htIpfl2, where 3 > 0 is some specified

paranreter. and rcompute tile value for p, accordingly.

Let

7:
2 + (, - i)Tc - (p + Zpjz)Tjyp,

0 if kitjl = 0 or the constraint is not active,
b - ci otherwise.

hre 11 llowtes tire Ql' rnu!ti pliers at ti solution of the QP subproblem, if available, or

OW,, n,,,ltiphier e.tirrMate otherwise.
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From the noii-singularity of the Jacobian at any limit point of the sequence {xk} (as-

sumption A3), there exists a constant 3 s,.A > 0 such that

A)'pj >: 3,tYp, II YP-- < N.
- (Icli - 3&o4

It follows that b satisfies

1b1 1< lcll + Il/ - -111 + NIIH(p + Zpz)l!

This implies the boundedness of Ilbll and also from Lemma 3.4.1 and condition C8,

lvj[kI - 0 IIbkIj- 0.

l)'ti ne /, fiuii

21c{  - bl! if -'oC"(O,p - > -pr rl pz -Io

211ZT1 - :Zf - or ON'(0,p - ) > -pzZT1Zpz -Iq
2 .

otherwise.

To define a bound for the penalty parameter, we introduce a positive constant 3th, and

let { rnax(p, P2) if lIph l < /3 h and Ile - -Il > Ilpl 2 ,f) I
rnax(p 1 , 0) otherwise.

Also, let

J Pmi, ifp- 0--0,
Pm

2p- otherwise.

Finally. the bound ) is given by

2p if 2p > p,

Pf p, if p. 2p > p,

p- ifp >2p.

From this delinilion it imnimediately follows that f > 2p), and if > 0 then 3> Pniin.

Properties of the penalty parameter

Frorr the previous definition we can show that property P4 holds for the algorithm.
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Lemma 6.3.1. &)r k > 0 dcfinea as above, thcy txists a constant / 3 > 0 such that cither

coj'(o~p) <_ - 3 ,uIlklV, or
'(0, P) -J 1u II , or (6.3.1)

Ok v(O'p) < - ,[p l"

for all p > k. .

Proof. Define a value (' such that min(ith,(s) > C > 0, and whenever Ipkfl _ C we have

(ilk + bk) 1 Isk > 0. Consider the following cases:

23"• If !1c'- ,'fl < A -- IIpIIz  then

qc" (0,1) f, + T - 2/31c - s112 < f_ K -3 1 lll)12 .

o (O.) =If, - Jlc - 112 < :S 1 13, 1P112.

* If Ile - 11 > AL llI2 and pl ii > C. then if p3 > 0, from _> pi,

f, + T - 21j5c - S112 < - 151Ic -_1 1,

i!nplying

o (op) < -o p.1Cc - ,112 < l 1 2 ._ 2 - Anin, --f

If /3 - 0,

oC7"(o, ) 5 illl 2

QN'(O,b) S_- PhllPlI2.I

• If I --. i! > IlP and Ilvfl <- C from Ilpll -< we m ust have used the normal

2 2,32

lin eseatch, and from the definition of /3 it must hold that /3 > max(p-,p2).

(0, = -pTp - j-[' + (2A - /i)T(c - s) - ,illc - .;11
, T1rZpz - 1112 - (2 + b)T(c - s) - (it + b) " - f1ile - .4112

_ -2pT7,T1 1 Zp - 211k112

<- - ,3 I (6.3.2)
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impli ug that property P4 holds. I

Followiiug the procedure outlined in Chapter 3 for the global convergence proof, the next

step is to establish bounds for the rate of growth of the penalty parameter. The next lemma

shows that property P5 holds for this algorithm.

Lemma 6.3.2. For any iteration k, in which the value of p is modified,

pk, 11pk, 112 < N

Pk1 ijCk, - Sk, II 5 IV,

Jul SOlmi LvJi,4a~t .V

Proof. We how first that for some positive constant K , whenever the value of p has to be

fiodified.

lie - sli > K IIl. (6.3.3)

Considering the cases introduced in the last lemma, whenever

Ic - l1l - L A 1 2

the reshult hIols immediately. If this is not the case, assuming that /3 > 31 + 3, it follows

that p =m'iax(/,.) and from

fh < -311P1V + 2 - sl1 < -/3211c - sil < 0,

,v imust have /' < 0 and / is not modified.

Al\1o,

p21c - .sI = lI2 + b11 _< N1,

[,j V,- .'< f I~ + ,llPvl 2 _ (/'h -G 31 )JI11 2 + / 2lc- '11 (s I + -[ 1) lIc - -1

m piviig

m lie - s l < N2

lr - S11 < ,
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but from lie - sl A']]p]J2 it follows that

IjpI 2 < N,

completing the desired result. I

The proof now proceeds along the same lines as those given in Chapter 3. If the normal

linesearch is used, for the corresponding iterations the results given in Lemmas 3.6.1 to

3.6.6 hold as given in Chapter 3. If the curvilinear search is used, it is necessary to modify

the proofs for some of these results, as follows.

Lemma 6.3.3. At any iteration where p has to be modified.

c Tfl < x, 1pi!2 + AN2 1e - .11,

wh( rc i d( ot(,; thMe QP multipliers, and N, and N 2 are positive constants.

Proof. If 111[! ! >,, the result follows from assumptions A2 and A3. If IIipl < (,, then p

has been ol;tained as the solution for the QP subproblem, and it satisfies

g p + PTqp = -C i.

Furthermore, a normal linesearch has been performed.

Let p- denote the value of the parameter before being modified; if 6 Pl, then

' (,p-) > O'(O,) > -fp, _10111P1 2 
_ 10l1C _ s11, (6.3.4)

and if p2,
-> -pZTIIZpz- p112 > -/3IhlpiI. (6.3.5)

Fromi

0N'(0,p) pTg + (2) - p)T(c - s) - p-i1c - -sI2

and the previous equations,

C T I- = Till_) 0'(O,p-) + (2A - q)T(c - s)- p-ic - ,

< 3;ujlpj 2 + (/3' + 112A - Izj)llc - sll - p- V - 511

From the nonnegativity of p-Ic - ,H'2 and the boundedness of the Lagrange multiplier

estimate the desired result follows. I

The proof of Lemma 3.6.2 (toes not require any modification for this case. The proof of

Lemnma 3.6.3 needs to be slightly modified, as follows.
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Lemma 6.3.4. There exists a bounded constant Al such that, for all 1,

k1+1-1

Pk, 1: 11, 0kil2 < M. (6.3.6)
k=kl

Proof. In the case when a normal linesearch is used, the proof follows along the same lines

as the proof for Lemma 3.6.3. For the case when a curvilinear search is used, consider the

following argument.

The subscripts 0 and A' denote quantities associated with iterations kt and kt+1 respec-

tively. Consider the identity

K-i

0- : Z (¢ - 0+) (6.3.7)
k=0

and observe that the termination criterion for the linesearch (6.2.14) and the fact that the

penalty parameter is not increased, imply that for 0 < k < K - 1,

,+ > -aa k, (6.3.8)

where 0 < a7 < I. Since Ok, r and O3 H are positive, combining (6.3.7), (6.3.8) and the result
of Lemma 6.3.1 gives

K-I
1af,, 2 ckIIPk1 2 < O,- ,O

k=o

Rearranging terms we obtain

K-I

IC)3H Z IkkkPkl < -0 (6.3.9)
k=O

The result then follows by multiplying (6.3.9) by p0 and using Lemma 3.6.2. 3

Lemma 3.6.4 does not require any modification.

Lemma 3.6.5 applies directly to the case when a normal linesearch is performed. The

corresponding versiom of this result for the case when we use a curvilinear search is given

in the following lemma.

Lemma 6.3.5. For 0 < 0 < ak,

<k'"(0) < -60kk(0) - 12ak<k (0) + NlIpkII2,

u'w( re N is a constant independent of k.
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Proof. The third lerivative of 0' is given by

,c.. (oi) =6 VTV
2 F(x)(2at, + w) + Ej(2avi + w:i)2ov + w)TV F(x 0,)(2av + w)

- 01(0) + p02 (a),

here

cl.. (n) = 6tf(,Vc(xc,)(2a v + w) - 2aul -12)+6at+t2(Vxv-1,

+ 3E,(2atI, + t2, )(2av + W)TV 2 c,(X 0 )(2ov + w) + 6ZijA,,vTV 2ci(x,',(20v + zv)

+: ~IAYk (2a Vk + UWk)( 2 a v + U,)TV3C.(X" )(2av + tv)

,,c.. (o=6 ( Vc(xo,) (2a v + iv) - 2a it - U2)T T(2Vc(x,,)v - 2u,)

+ 3Zi ( Vci(xcJ(2av + w) - 2u,- ui2 , )(2av + W)TV 2 Ci(Xc )(2ov + wy)

+- L(Ci(Xco) - scO.)Yk(2avk + Wk)( 2av + W)TV3C,(Xa )(2av + w)

+ 6Zi (ci(x,,) - S"' )vTV2c(x)(2av + w).

To conpute a bound for the third derivative, the following Taylor expansions are useful:

71c,(x,)(2om+ u')-2ouj, - 112, =-2o (C:-S,+W, _ WTV2CiwV_(2nv+w)TV2c(z:)(2av~w),

C'(X.) - .5"' (1 -
2 )(C, _ S,) _-2 ) + IVTV 2 CW _ L~(2ov + W)TV 2 C,( z')(2av + l

From these results, the (definlitions of v and w and Lemmas 6.3.4 and 3.6.4, it follows that

= Q 2 4atT(c -s) + l2opI~c - SOr + O(11p112)
=2.1 (t I (c - s) + 6aTV Fwv + l2agTv + 12a(A - tl)T(c - s) - 6aO' (O) + O(111p112)

=12oi'(c - ., ) + 12ag Tv - 6aO' C (0) + O(j1p112).

We must now considler two cases. If v $ 0 we can write

0""(a) =l2avT(g - A~j) - 6akc (0) - l2njt7s + O(IjpIj2), (6.3.10)

and if IV $ ( but v =0 then

S(o) = 1 tv" - 1 P) - 6.0c"( 0) - l2a~c'(0) - 12a-YL' S + O( 11r112 ). (6.3.11)



6.1. !)cfinition ard propcrties of the pcizalty pamintcr 11

From ciondition C8 on the multipliers, implying that for large enough k. , > 0, tie filial

result follow-s:

Oc. (t) < -6aOc"(0) - 12aoc'(0) + A'IpI2  (6.3.12)

for some lositive constant N. I

It is now possible to prove that the steplength Ok is also bounded away from zero in

the case when a curvilinear search is performed. For the normal linesearch, the oquivalent

result is given in Lenima 3.6.6.

Lemma 6.3.6. If a curvili ear search is performed, the steplength Cirk (0 < k K ) s:atisfi~s

0k) - 6ck(0) ! (~2 k(0)

(fld <k > , h. t' 0 < a < 1, and a > 0 is indcpendent of th ih ration.

Proof. We show that a step satisfying the conditions for the curvilinear search termination

criteria exists and is uniformly bounded away from zero. To take into account the variant

ill the terni nation conditions introduced for case b), let 6 denote a given initial value, to

be selected as either 1 or 6.

Assume tha t condition (6.2.1-1a) is not satisfied for 0 = 6; that is,

d 2 c"Od)> 0-(0) + a'-- (0)
2r- (0).

I)efine
2

,( C,)+(0 ) - a--'-'(0)

so that

','<( ) e> ( 7 <a<5 (0).
0"( ): (0 ) - (70OC (0).

For (1 0,

v,'a(0) - 0,

,',(o) = C'(0) < 0,

,,',(0) - (1 - c,)O" (0) < 0.
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Define also a2 Coo

,, =c() - c(0) - r/a¢c'(o) - 2/-0 (0).

From (,(d) > 0, there must exist a value al E (0,6) for which O'J(aj) 2! 0. Otherwise,

if .(a) < 0 for all a E [0,6), integrating on this interval we have

&2 C"OC(6) < OC(o) + 776c'(0) + 77-0 (0), (6.3.13)
2

implying

(,',(() < 1760C'( 0 ) + r/- 0 6 2 0C,(0) < 0. (6.3.14)
2

Let a, be the smallest such point, implying that 4',(a) < 0 for all a E [0,a 1 ). If we integrate

again between 0 and a1,
210 C"

6' (0 1 ) < 0C(0) + 77al0c (0) + iq- -¢ (0), (6.3.15)

and
2

'Mal(Q) < 77aio"'(0) + (77 - T)-io"(0) < 0, (6.3.16)
2

so a, satisfies the termination conditions.

For at we have
(Cki) - 7C'(o) - 7oloc(0)= 0, (6.3.17)

and using a series expansion for Oc'

2
¢C'(a1 ) = 0/C'(0) +ot aC(0) + 0c (0,C..8

where 9 E (0,aj].

The previous equations imply

(1- ?)7c'(0) + aI(1 - 7/)OC"(0) + 2_ (0) = 0, (6.3.19)

and as we know that a positive root exists, we must have Oc"' (0) > 0. The root is given by

_ ) 'c"(07 I / "()2--( / ,¢'0

0 -(1 -+ (1-9)2 c,,) Co(0) -2(1 - ) C(0) (6.3.20)

and the following bound holds:

Coa( -1(0), -2(1 - ) c ' ( 0 ) (6.3.21)rt ,l ? m a x - 2 ( 1 1?r ), -c' 6 1 C ,,,l )l
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From property P4, c"(0) S -!3, IpjI2 and

<c"() -18min(6c"(0), c'(0)) + ijPg2

for some X > 0, giving

a~ ma2(( 2(1-- 77)311 (6.3.22), >max 180H + N ' V i-S-0 + NA'

completing the proof. I

We can uow present the global convergence theorem for this algorithm.

Theorem 6.3.1. The algorithm described in this chapter has the properly that

lill tkIIP l = 0. (6.3.23)

Proof. The proof is similar to the one for Theorem 4.3.1. We include it here for complete-

ness.

If I[pkIl - 0 for any finite k, the algorithm terminates and the theorem is true. Hence

we assume that IIJJl j 0 for any k.

When there is no upper bound on the penalty parameter, the uniform lower bound on

a from Lemmas 3.6.6 and 6.3.6. and the bounds on the growth of the penalty parameter

given by Lemmnas 3.6.3 and 6.3.4, imply that for any 6 > 0 we can find an iteration index

K such that

IIPkjj< 6 for k > ,

which implies that IjPkj - 0, as required.

In the bounded case, we know that there exists a value fi and an iteration index k such

that p = f for all k > k. We consider henceforth only such values of k.

The proof is by contradiction. We assume that there exists E > 0 and an infinite

subsequence {k,4 such that jjPk,]j _j ( for all i. Consider only indices i such that ki > k.

Every iteration after A' must yield a strict decrease in the merit function becuse, using

Lemma.s 3.6.6. 6.3.1 and 6.3.6, and the fact that the penalty parameter is not modified,

O(Q) - 0(0) _ - 1(7&',,nIpll2 < 0.

The adjustment of the slack variables .s in step (ii) of the algorithm can only lead to a further

reduction in the merit function, as L is quadratic in s and the minimizer with respect to si

is given by c, - A\/p. For iterations from the subsequence we have

O(Xk,+,) - O(Xk) < O(Xk,+I) - O(Xk) < -1176'/3,, .
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Therefore. ,iiicc the rierit function with p = / decreases by at ]east a fixed quantity at

overy step in the subsequence, it must be unbounded below. But this is impossible, from

assumptions Al, A2 and Lemma 2.4.1. Therefore, (6.3.23) must hold. I

Corollary 6.3.1.

hn Ilik - * II = 0.

Proof. The result follows immediately from Theorem 6.3.1 and Lemma 3.1.i 1

Corollary 6.3.2.

in flAk - A*l1 = 0.

Proof. The result follows from Lemina 3.7.1, given the results in lemnia 3.6.6 and ('orol-

lIry 6.3.1. *

6.4. Rate of convergence

After global convergence has been establlished, the next step is to prove that under certain

conditio s the algorithim has a quadratic rate of convergence. Note that in this section

we can alwa.v assume that Eemria 6.2.1 applies, as we are only interested in the limiting

behavior of hie algorithm. C'onsequently, we need only consider the case when a normal

linesearch is Iised.

Again. it is necessary to start by presenting some results on the growth rate of the

penalty parailieter. The next lemma establishes property P7 for the algorithm.

Lemma 6.4.1. If tho ry xists an infinite subs(quence {hk} of iterations in which th penalty

paranvt(ir i.s tindificd,

hil PkIlP 112 = 0,

lil Pk, lIck, - .Sk,II .=  0

I- - '

Proof. \e drop the subscript k, in what follows. From the definition of /3,

p2k - = 11 2 + bff,
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'Ind fr'm til, fact that jlbk11 - 0 as IHpJ - 0, it must hol1 that

lim 112 k, + bk,1I = 0.

Assume that 11IlH -_ C. From (6.3.2),

QN'(0, p2) < -qllPll 2 < 0,

and from

ON (Opi)=-0

it must hold that P1 < 2p2, implying that

urn Pk, Ick1 - Sk, 11 = 0.

WVe can now !. ( (6.3.3) to get
hlr P,.,IlPk, 11I2 = o,

completing the proof. I

The proofs for L.emmas 3.8.1, 3.8.2 and 3.8.3 hold for this algorithm.

Conditions for quadratic convergence

The last requirement for the proof of quadratic convergence is to establish that a unit step

is always tak,ii for points close enough to the solution (property P8). The condition needed

to prove this result, and to ensure that the sequence {Xk - .r*} converges qma~dratically, is

a slightly modified version of condition C12 on the mu!irpliers:

C12". lhe multiplier estimate satisfies

11lk - A*l1 = O(llXk + Pk - X*11).

Lemma 6.4.2. If condition C12" is satisfied, there exists an iteration indx A such that

for all indo ., k > k a unit sic pl ngth is a(icept('d: Ok = 1.

Proof. Asi ule that lull is small enough so that a normal litiesearch has been performed.

Given t hat condition Cll in Chapter 4 is trivially satisfied for this algorithm ,,r..,m...

that Ilk - 1"k ), from Lemma 4.4.3 we have that

11-k + Pk - *ll = o(l.rk - X*Vl*)
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using this reault it condition C12" we obtain

II)k - A*i11 = o(lxk - I I).

lence condition C12 is also satisfied. We can now use tie same argument presented in the

proof of Tleoreii .1.4.1 to conclude that the desired resvut holds for this algorithm. i

UTh proof of quadratic convergence is given in tile following theorem.

Theorem 6.4.1. Tht algorithm preseftcd in this chapter convcryes quadratically.

Proof. It is enough to show that ljx + p- x*1= O(= fx - x* 11), as the previous lemma

showed thal a unit step is always taken for large k. Assume k to be large enough so that

Pk is obtaind as tile solution of the QP subproblem. and the correct active set has been

identified.

\We diop lihe iteration index k in all that follows. Consider first tile decomposition of

x" + p - x* into null-space anld range-space components:

x - x Zu + ,,v

For the range-space component, consider the series expansion restricted to the active

constraints at the point:

0 -- c = C+ A( * - X) + O(lix - X a).

",om Ap = -c and the previous decomposition,

4(x + p - x*) (= O1 - 1*112).

For the null-space component, consider the corresponding Taylor series expansions

aroudl x:

A * + V-[,(, *  
_ X) + o(jjX - *111).

A. * A ..1TA Z ,A* 2c,(x* _ x) + 0(llx _ X*112).

(ombinin g this, two results,

If(.x - x* ) + A.l.* = g + F,(A, - x )V2 c,(x - 1*) + 0( 1.r - *11'2),
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and from Hip + g = A"i ,

I(x + 1- X*+ ,T(A* - ;i) = FAj - A,)V~c,(x - x*) + o(11 x - x*112 ).

Now using condition C12" on the multiplier estimate,

Ilk -A = O(IlXk + pk -X*11),

and assuining that Ipil is smaHl enough so that a step of one is taken in all iterations and

therefore Ak /'k-1, the previous equation reduces to

tl (x + p - x* )+ A T(A *  -f) --o (11x - x *l11 ).

Putting these results together,(1 11 T X P rp- X*\ 1X- *1)
A 0 ) A* - /I) = O(jlx-r*I2),

anid using the inon-singularity of the reduced Hessian and the Jacobian of the active (on-

st raints at the solution. ( +P - * )~ j _ X*112),

lr IIk+1 - x*li - K < oc,

coni pletiiig the proof. -

6.5. Summary

In this chapter we have introduced and analyzed a third algorithm based on the framework

algoithm of Chapter 2. Its distinctive feature is the use of exact Hessian matrices of the

objective and constraint functions. As before, the search direction is obtained from an in-

complete solution for the QP subproblem. Some conditions on the incomplete solution have

boen presented that allow some convergence properties of the algorithm to be established.

The result, r,:

e 'hen the search direction satisfies the conditions introduced in Section 6.1, the miul-

tiplir estimate satisfies conditions C7-C9, and the Hessian for the QP subproblem,

Ik,. is the exact Hessian of the Lagrangian function, then the algorithm is giobiily

con? I u t /.



0 It' tll11 iiiultilier VStilllat(" Ilk SatiSfy t lie follo(Wi11g condition:

C1 2". Wpk - A*11=(IlX + P~k - X*l11)-

Th t1 w I algoritIin oi c ( rgcs quaidrO twally.



Chapter 7

Numerical Results

In thiis cliiipt er we presenit numerical results obtainled from an inipleinuttat ion of t he al-

'tOri tIi n demt riblei aiid analyzed in Chapter -4. The implement at ion has been writtl eii s a

iiiodification of N PSOL. with the only difference being the use of all incomnplete solution

for the (21 sumhproblemn as the search direct ion, an(] the consequences of this change oil lie

rest of the (L'oritIi in. 'Ihle details of the nio(ifncation arc given in the following section.

'fIe( purpose of thle testing reported in this chapter is to dlemonstrate that the efficiencly

and robustnecss of tie modified algorithm are comparable to those of NPSOL. 'Naturally, we

can oiilv test t lie hypothesis on the domain of problems NPSOL is dlesigned to solve. inmelly

p~roblems haiving a moderate number of variables and constraints, although on these prob-

leniis the opportunities for improvement are limited, as we discuss in later sections. What

his implemientation really tests is whether the introduction of flexibility in the (leterilla-

ton of th le soaircli dIirection has a significant cost.

7.1. Imiplemientation

In t his sectioni we dlescribe the imnplementation used for the early- term in ation rules nt ro-

(I mced in ( ~inpt er 2. The rest, of the algorithmi is identical to NPISOL, and a det ailed

description of other implementation issues can be found in Gill et al. [GMISW86aI.

Frorn the ktill Q P subproblem, the search direction Pk is compmutedl accordirng to the

following" step'. (Th le Subscript k correspon ding to the iteration nu mber is (Iropped froiii

li:)w onl.)

126
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SAll ilitiId teasible point Pu is obtained following the same procedure as NPSOL. Con-

ditions (2.2.6) and (2.2.7) have not been implemented, as the feasibility phase in

NPSOL. seems to give results that are adequate with respect to these conditions.

• The solution process continues until the first stationary point /5 is reached, and the

corresponding QP multipliers i! are computed. In all that follows we work with a

multiplier vector It that is weighted by the norms of the corresponding constraints,

" Let denote iiiachii ne precision. If

V1 ipi > v',u 711

then ;i is taken as the search direction.

" If ( 7.1.1 ) does not hold, we can take a step away from a subset of the active constraints

while decreasing the value of the QP objective function. To identify the set of active

constraints to be deleted, define

IPin = minpi,

and intro(luce a vector c as

11 ili if Ii < 3,billni,,

0 otherwise.

For the results presented in the following sections, I,,nb = 1 - .

" There is also a limit on the maximum number of constraints to be deleted. If the

previous condition is satisfied by more thai a specified number of active constraints,

,3,,r, only tie 3 ,ml ones having the smallest multipliers are deleted. For the results

giveui, J. = 50. For most problems this limit has no effect, since the total number of

constraints is less than 50.

* 'lle (direct ion away from the selected constraints is obtained as the least-norml solution

of the sv-teuim

Ad =
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that is, we define

d, = (AY)-le, d, = 0,

to obtain

d = Ydy.

* If c. denotes the step to the nearest inactive constraint, and am is defined as in

(2.2.9):

(g + HP)Td
dTHd

we (lfin e o as in condition C3:

a = xnin(ac,o~m.Af),

where ( ., is 100 for this case.

" We ol)tain the search direction p from (2.2.11):

+ ad if 1II1 < 0,/,1Pl + adI,
Pa otherwise,

where .Lp = 100; with this value the step ad is accepted in nearly all cases.

* Finally, the multiplier estimate used in the linesearch is taken to be the QP multiplier

if p = I). Otherwise, it is taken to be the least-squares estimate A, obtained from

AATAL = Ag.

7.2. Test problems

The two algorithnis, NPSOL and its variant using an incomplete solution for the QP sub-

problem as the search direction, have been compared by solving a collection of 114 problems

from the literature. Some features of these test problems are given in Table 1, along with

the "optimal" function values obtained in the actual runs.

The problems have been obtained from the following sources:

* Problem I is the example problem distributed with NPSOL; its description can be

found ini [GMSW86a]. Problems 3 and 4 are slight reformulations of the same problem,
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where t ie hounds -I <K X 3 < I have been replaced by the constraint A < I. Problem

-1 uses tle saiiie starting point as Problem 1. Problem 3 uses the starting point

2 11 1 1 )

31 3 ' T0 3' 3 5 .3' 3 )

* Descriptions for problems 6 and 12--15 can be found in [MS82]. The version of problem

6 considered is the one corresponding to a value 7' = 10. Problems 12 and 13 start

from point (d) for Wright No. 4 as indicated in the reference, while problems 14 and

15 start from points (a) and (b) for Wright No. 9, respectively.

* A description of the SQUARE R{OOT prcblems ( 17-20) and of EXP6 (9) can be found

inl ralev ['raS, ].

9 Problems 21-30 were obtained from Boggs and Tolle [BTS-].

* All problems having names starting with "IIS" are from Hock and Schittkowski [11S81].

* Problems 85-95 can be found in Dembo [Dem76].

All the above problems have been used in the past to test NPSOL. It should be noted that

the problems in this group are small; the average number of variables is 10, and the average

number of constraints is 6. Nevertheless, many of these problems are considered hard to

solve. Moreover, for some of these problems the assumptions made in Chapter 2 to establish

the convergence results fail to hold: for example, in some cases the Jacobian at the solution

is singular. or no feasible points exist for some QP subproblems.

In addition to the previous set, the algorithms have been tested on another group of

problenis:

e The sI (ructural optinizationi problems 99- 11.1 are described in I ingertz [i1189]. The

letters -" and "E'" in the problhm name indicate if the formulation used included

explici tly tile displaceient variables ("E") or eliminated theni iII adva c. Also, tile

follo.;iiig nulmber (10, 25, 36 or 6:3) denotes the number of bars iII lh truss considered.

Finally, whenever a number is included at the end of tile hiaiie (006. 010 ,r 060), the

illitia lpoint has beei modified to be Xj = 6. 10 or 60 respectivlv.

These problems have been introduced because of tbe atypical behavior Iof quasi- Newton

.SQl' alolnitlhs on them. hor this group. the ratio of QP to nonliniear iteralions is large
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when compared to tile size of the problem; on the first test set (problems 1-98) the average

ratio for NIPSOL is 2 QP iterations per nonlinear iteration, while on problems 99--114 the

average ratio is 30.

The normal behavior of NPSOL on the first set of test problems is to require a relatively

large number of QP iterations in the first few nonlinear iterations. Typically, the number

of QlP iterations declines exponentially until near the solution, when only one iteration is

required. As a result, significant savings achieved by incomplete solution of QP subproblems

in the early iterations are masked by a large number of subproblems requiring only a few

QP iterations. As an example, for problem 98 the largest numli-r of QP iterations needed

inl any nonlinear iteration is reduced from 57 for NPSOL to 15 for the algorithm using early

terminatiou. This effect is much less clear when we look at total numbers of QP iterations

(21 for NPSOL vs. 170 for early termination).

The S'I'IRU( problems depart from this "standard" behavior, in the sense that the

nuhmber of Ql) iterations declines much more gradually. (Although only one QP iteration

is equired ill the end, most nonlinear iterations require more.) This offers the possibility

of observing the reductions that can be achieved by using tho early-termination criterion,

with limited distortion from the asymptotic behavior of NPSOL.

Finally. the piroblems in this second group are larger than the ones presented above; the

average nnumber of variables is now 55, and the average number of constraints is 100. For

all the reasons mentioned, this set of problems provides a better environment in which to

test the ability of the proposed early-termination criterion to reduce the total number of

QP iterations.

Computing environment

Version 4.02 of NPSOL was used in the comparisons, and all parameters used in the code

were given their default values (see [GMSW86a]). No attempt has been made to improve

the results by selecting a different set of parameters, as the main goal of the comparison is

to determi ne le reliability of the changes introduced in NPSOL.

The ruins were performed as batch jobs on a DEC VAXstation II with 5 megabytes of

main meiiory. The operating system was VAX/VMS version 4.5, and the compiler used

was V A X 1ORfTIIAN version 4.6 with default options.
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TABLE 1

Problem Set Description

Linear Nonlinear Optimal
N, Il,,I, name Variables constraints constraints objective

I NI')I. S.'- \l'I, PROBLEM 9 4 14 -. 1349963e+01
2 S1N.;IAR 2 0 2 .0000000e+00
3 1[1-XAk;ON 9 4 15 -. 1349963e+01
It IIEXAGON (ALT. START) 9 4 15 -. 1349963e+01
5 I(A7 7 7 0 .9295973e+06
6 ALAN MANNE'S PROBLEM 30 10 10 -. 2670099e+01
7 RO(SEN-SLZUKI 4 0 3 -. 4400000e+02
8 Q1' PROBLEM 7 7 0 -. 1847785e+07
9 .:x[p6 6 0 0 .186,81 e- 19

10 SIEINKE2 6 0 4 .4000131e-03
11 NORWAY 7 6 0 -. 24023<14e+02
12 \1IIW.1 5 0 3 .2787187e+02
13 MIIW9 5 0 3 -. 3618808e+02
14 MII\V9 INEQUALITY 1 5 0 3 -. 210,1078e+03
15 \II1W9 INEQUALITY 2 5 0 3 -. 6043

5
39e+04

16 WOPLANT 12 3 5 .1555716e+02
17 SQUARE ROOT 1 9 0 9 .2500000e+04
18 SQUARE ROOT 2 9 0 9 .2999795e+01
19 SQUARE' ROOT 3 9 0 9 .2000000c+01
20 SQUARE ROOT 4 4 0 4 .2500000e+0,1
21 BI 2 0 1 - .I00000Oe+0 1
22 B'"I2 3 0 1 .3256820e-01
23 BT3 5 3 0 .4093023e+01
24 BTI 3 1 1 -. 4551055e-03
25 BT5-S63 3 1 1 .9577426e+03
26 BT6-IIS77 5 0 2 .2415051e+00
27 BT7 5 0 3 .3065000e+03
28 BT8 5 0 2 .lO00000C+01
29 BT9-iiS39 4 0 2 -. 1000000e+01

I30 BTI 2 0 2 -. lO00000e+01
31 BT II -11S79 5 0 3 .9171343e-01
32 BTI2 5 0 3 .6188119e+01
33 BT13 5 0 1 .0000000e+00
3.1 POWI.,LL TRIANGLES 7 0 5 .2331371e+02
35 POWELL BADLY SCALED 2 0 1 .1305195e-23
36 POWELL WRIGGLE 2 0 2 -. 1911618e-15
37 POWEIL-MARATOS 2 0 1 - .1000000e+01
.38 11S72 4 0 2 .7266

7
94e+03

39 11S73 (CATTLE FEED) 4 2 1 .2989438e+02
40 IIS107 9 0 6 .5055012e+04
41 MIUKAI-POLAK 6 0 2 .5000000e+01
42 INFEASIBLE SUBPROBLEM 2 1 1 -
43 1-S26 3 0 1 .1969433e-20
44 I1S32 3 1 1 .100000Oe+01
45 IS,16 5 0 2 .1936782e-22
46 it5!-I 5 3 0 .3851860e-32
47 11S52 5 3 0 .5326648e+01
,18 1s53 5 3 0 .4093023e+01
49 I'ENAINIYI A 50 1 0 .4313635e-01
50 I'ENALTY1 B 50 1 0 .,1313635e-01
51 PEN ALTY C 50 1 0 .4313635e-01
52 I1sI.1 2 0 1 .1002181e+01
53 IISi i 3 0 I .6299842e+04
5, 11S65 3 0 1 .9535289e+00
55 IS170 4 0 1 .7498464e-02
56 1jS71 4 0 2 .1701402e+02
57 HS,-1 4 2 3 .5126498e+04
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TABLE 1 (CONT.)

Prohlem Set Description

Linear Nonlinear Optimal
No. Problem name Variables constraints constraints objective

58 HS75 4 2 3 .5174413e+04
59 HS78 5 0 3 -. 2919700e+01
60 HSS0 5 0 3 .5394985e-01
61 HSSI 5 0 3 .5394985e-01
62 HS8-t 5 0 3 -. 5329025e+07
63 HS85 5 0 38 -. 1905155e+01
64 HS86 (COLVILLE 1) 5 10 0 -. 3234868e+02
65 HS87 (COLVILLE 6) 6 0 4 .8927598e+04
66 HS93 6 0 2 .1350760e+03
67 HS95 6 0 4 .1561953e-01

68 HS96 6 0 4 .1561953e-01
69 HS97 6 0 4 .3135809e+01
70 IHS98 6 0 4 .3135809e+01
71 HS99 7 0 2 -. 8290102e+09
72 HS100 7 0 4 .6806301e+03
73 HS1o4 8 0 5 .3951163e+01
74 HSI05 8 1 0 .1138418e+04
75 HSI08 (HEXAGON) 9 0 13 -. 8660254e+00
76 HSI09 9 1 8 .5362069e+04
77 HSIIO 10 0 0 -. 4577847e+02
78 HSI11 10 0 3 -.4773239e+02
79 HS112 (CHEMICAL EQ.) 10 3 0 -. 4776109e+02
80 HSI13 10 3 5 .2430621e+02
81 HS114 10 5 6 -. 1768807e+04
82 HS117 (COLVILLE 2) 15 0 5 .3234868e+02
83 HSII8 (LC PROBLEM) 15 17 0 .6648204e+03
84 HS119 (COLVILLE 7) 16 8 0 .2448997e+03
85 DENIBO 1B 12 0 3 .3168222e+01
86 DEMBO 2-HS83 5 0 6 .1012243e+05
87 DEMBO 3 7 4 10 .1227226e+04
88 DENIBO 4A 8 0 4 .3951163e+01
89 DEMBO 4C 9 0 5 .3952139e+01
90 DEMBO 5-HS106 8 3 3 .7049248e+04
91 DENiBO 6-HS116 13 3 10 .9758751e+02
92 DEMBO 7 16 8 11 .1747870e+03
93 DEMBO 8A 7 0 4 .1809765e+04
94 DEMBO 8B 7 0 4 .9118806e+03
95 DEMIBO 8C 7 0 4 .5436680e+03
96 OPF 67 0 60 .9927005e+00
97 GBD EQUILIBRIUM MODEL 44 38 6 .4510281e-16
98 WEAPON ASSIGNMENT 100 12 0 -. 1735019e+04
99 STRUCIJOKON 10 0 11 .4156398e+04

100 STRUCEIOKON 18 10 8 .4156398e+04
1o STRUCIIOVAN 10 0 12 .5076669e+04
102 STRUCEIOVAN 18 10 8 .5076669e+04
103 STRUCI25006 8 0 74 .5451627e+03
104 STFIUCE25006 44 50 36 .5451627e+03
105 STRUCI25DAT 8 0 74 .5451627e+03
106 STRLICE25DAT 44 50 36 .5451627e+03
107 STIIUCI36DAT 21 0 76 .3389915e+05
108 STIAUCE36DAT 75 72 54 .3389915e+05
109 STIIIUC163040 63 0 128 .6117064e+04
110 STIRCE63040 147 126 84 .6117064e+04
111 STRIUC]63060 63 0 128 .6117064e+04
112 STRUCE63060 147 126 84 .6117064e+04
113 STUIUCI63DAT 63 0 128 .6117064e+04
114 STRUCE63DAT 147 126 84 .6117064e+04
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7.3. Results

The results obtained from running both algorithms on the test set described in the previous

section are presented in Table 4.

The parameters chosen to characterize the relative performance of both algorithms have

been: the number of outer (nonlinear) iterations for each problem; the number of calls to

the routine computing the values of the objective function, the constraint functions and

their derivatives (function evaluations); the total number of inner (QP) iterations for the

problem (including the number of iterations necessary to compute a feasible point); and

the running (CPU) time needed to solve the problem. The results corresponding to both

algorithms are given as a single entry in the tables, in the form

NPSOL result/Early-termination result.

Given that many of the problems are not convex, the algorithms may converge to dif-

ferent solutions. A few such events are indicated in Table 4. Another possible outcome is

failure-that is, the algorithm terminates without finding a solution, because the iteration

limit has been exceeded, because no significant progress can be made at the current point

with respect to the merit function, or because the objective or constraint functions need

to be evaluated at a point for which they are not defined in the code. Such failures are

indicated by "

To summarize the results from the test set we now give statistics for the whole set of

problems. We start by presenting in the following table the number of failures for both

algorithms. These values illustrate the reliability of the early-termination algorithm: it is

able to solve 98% of the number of problems solved by NPSOL, and 92% of all the problems

attempted.

TABLE 2

Problems Successfully Solved

NPSOL Early termination

107 105

'Fable 3 presents a summary of the results for the four quantities monitored in Table 4.
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h'lie values have been computed as the geometric means for the ratios of the value, fa-

NPSOL and for the early-termination algorithm; that is, entries larger than one indicate

that the corresponding value for NPSOL is larger than the value for tile early-termination

code (excluding those problems where one of the algorithms failed). Separate entries have

been provided for problems 1-98 (the smaller problems), and for problems 99-114 (the

structural optimization problems).

TABLE 3

Average Behavior: NPSOL vs. Early Termination

Problems

All 1-98 99-114

Nonlinear iterations .988 .9--9 1.04-1

Function evaluations .994 .999 .963

QP iterations 1.190 1.112 1.884

CPU time 1.043 1.022 1.200

We now comment briefly on the implications of these results.

* The early-termination rule seems to behave very well regarding the numbers of non-

linear iterations and function evaluations; even if we are now using a search direction

of "worse (quality" than in NPSOL, the numbers are very close for both algorithms.

" The number of QP iterations is reduced by 20% for the complete set. When judging

this figure we must take into account that the problems are small, implying that

the number of QP iterations required per nonlinear iteration is also small. (In fact.

the average value for the test set is 5.6 QP iterations per nonlinear iteration.) The

opportunity for improvement is correspondingly limited. Moreover, both codes use the

active set at the solution of the previous QP subproblem as a prediction for the correct

active set in the current subproblem, resulting in a small number of QP iterations close

to the solution. Finally, the early-termination rule still requires a feasible point, and

the feasibility phase is the same as in NPSOL. When this pha.se accounts for most
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of the iot il numfiber of iterations, as with the STRUC problems, the possibility of

iiiproveineit is furt her diminished.

Nonetheh,,>s, it should be noted that for problems 99 1l.l the improvement obtained

IS Sig tiicantliv greater thlan 2u-4, a. Sie imiean i'At~o is itow i l iit faL, w ih

iook on l at the larger problems, the relative performance of the early-teriniation

algorith ,i iiipiovs markedly. This offers the promise that for even larger problems

the resuh. obtained may be substantially better than the values shown above.

iThe ('P1V time required by the early-termnination a!gorithm is lower than the time for

N PSOI . bit bv a factor that is much smaller than '0, the i , h,,r ,'f QP itora tions.

This is dti not oiily to the fact that function evaluations can be Pxpensive when

compared to the effort to solve each QP subproblem, but also to some deta, F in

the inipleiientation that have been chosen to affect the number of QP iterations,

even at tl1e exp,,-c of rinnii ng time. For example, the multiplier estimate used

for the lieesearch (the least-squares multiplier) is expensive to compute when many

constraint-s are deleted in the last step, as the factorization for the Jacobian of the

active coiistraints must be updated. There are still options to be explored that might

improve the running times for the modified algorithm.

Finally, Figures 1 and 2 show plots of the results included in Table -1, in an attempt to

make these re.sults more easily understandable. The vertical axes give the base 2 logarithms

of the ratios between the corresponding values for NPSOL and the early-termination (ET)

algorithm. A value of I would correspond to a case in which NPSOL requires twice the

number of nonlinear iterations, or function evaluations, etc. needed by the early termination

algorithm.
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TABLE 4

Numerical Results

Nonlinear Function QP CPU
No. . roblem name iterations evaluations iterations time (s)

1 NI)SOL SAMPLE PROBLEM 12/13 16/18 45/34 3.69/3.61
2 SI2:GULAR 15/15 16/16 4/4 1.03/1.05
3 HEXAGON 15/16 21/23 32/29 4.41/4.41
4 HEXAGON (ALT. START) 11/11 16/14 35/26 3.56/3.26
5 L U7 7/9 9/11 13/16 .76/.95
6 ALAN MANNE'S PROBLEM 17/17 18/18 40/37 21.13/21.92
7 ROSEN-SUZUKI 8/8 11/11 9/9 .81/.81
8 QP PROBLEM 8/10 9/11 23/15 1.10/1.04
9 EXP6 33/53 35/57 38/57 1.96/3.08

10 S'lIIN KE2 -/5 -/6 -/14 -/.87
11 NORWAY 4 /0r 5/7 3.4/13 1.23/.65
12 %IIW4 10/10 18/15 11/12 1.31/1.25
13 \IIW9 30/19t 56/28 42/24 3.71/2.31
14 MiHW9 INEQUALITY 1 28/23 38/28 59/40 3.41/2.73
15 NIIIW9 INEQUALITY 2 ,11/14t 58/27 80/2.1 4.83/1.77
16 WOPLANT 25/29 29/33 4.1/35 6.85/7.17
17 SQtARE ROOT I "/- * -- - -
18 SQUARE ROOT 2 23/23 36/36 0/0 5.01/5.32
19 SQU\E ROOT 3 6/6 9/9 7/7 .95/.94
20 SQUARE ROOT 4 "/ " -- 1-- -- 1
21 BTI 11/11 19/19 11/11 .81/.83
22 B12 9/9 1,4/14 9/9 .71/.70
23 NT 2/2 5/5 2/2 .19/.19
24 BTi 12/12 18/18 13/13 .92/.92
25 R1 5- IS63 6/c 9/9 8/8 .58/.58
26 BIu 11S77 15/15 21/21 16/16 1.52/1.54
27 BT7 31/31 56/56 32/32 3.36/3.43
28 BT8 17/17 19/19 17/17 1.25/1..1,
29 BT9 H1S39 13/13 16/16 1,1/14 o;/1 Iq
30 BTI0o 8/8 11/11 0/0 .,8 ,52
31 BI- H1S79 9/9 12/12 10/10 1.05/1.0-
32 BI' 2 27/27 57/57 28/28 3.0,1/3.0..
33 BIl3 32/32 44/44 34/34 2.61/2.62
3,1 POWELL TRIANGLES 23/15 37/16 36/23 3.27/2.28

35 POWELL BADLY SCALED 12/12 15/15 13/13 .85/.85
,3 POWELL WRIGGLE 34/32 69/55 60/,10 2.77/2.39
37 POWELL-MARATOS 6/6 7/7 6/6 .4.1/.44
.38 11S72 7/7 8/8 8/8 .69/.67
39 11S73 (CATTLE FEED) 4/4 5/5 4/,I .38/36
40 1 I107 11/11 18/18 27/18 2.77/2.56
,11 %II'KAI-POLAK 10/10 16/16 13/13 1.08/1.11
42 INF.EASIBLE SUBPROBLEM / /- __/

13 HIS26 47/47 64/64 48/48 3.39/3.41
44 Ff[32 2/4 3/5 3/5 .25/.38
45 11S.6 55/55 58/58 56/56 5.26/4.98
46 l1551 2/2 5/5 2/2 .18/.14
,17 1152 2/2 5/5 2/2 .19/.16
18 11S53 2/2 5/5 2/2 .19/.16
49 PENALTYI A 16/16 18/19 77/41 20.01/16.19
50 ''NALTYI B 6/7 14/13 67/32 14.77/11.77
.51 I'INALTY1 C 29/15 85/40 152/65 2,1.35/11.65
52 11513 22/19 23/20 13/10 1.29/1.22
53 11S,-I 29/43 39/62 47/60 2.34/3.33
54 11';G5 8/9 10/11 16/16 .70/.78
55 11S70 36/- 39/- 39/- 3.33/-
56 IS71 5/7 6/9 9/9 .53/.67
57 1117,1 10/26 15/48 14/28 1 17/2.68

Failed to solve the problem.
t Converged to a diflerent minimizer.
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TAIBLE ,i (CONT.)

Nunerical results

N on linear Function Q P C'IT
No. PrIldom name iterations evaluations iterations time 

.8S 11"87", 6/8 10/11 7/9 ./2/.0

.1) 11S7S 10/10 1,1/14 11/11 1.15/1.15
60 [1"so 8/8 10/10 8/8 .92/.92
61 lISI 14/14 20/20 15/15 1.57/1.60
62 1t88. ... /4 I - /5 -/51
63 1188- 17/14 18/15 33/20 1.00)/3.12
GI I Ist; t('LVILI.E 1) 6/7 8/8 11/11 .6216,4
6.5 HS87 (()IVIII,E 6) 11/8 18/9 18/1i 1,63/1.2"
(;(; lS'1:1 12112 1.5/1 1/14 1.6/ .38
67 11:3-, 1/1 2/2 1/1 .15/.15
(;8 I 1W.!it 1/1 2/? 1/1 .17/.1.5
69 118 ts,7 ;i/3 (;/C 3/3 .40/ A 1
70 11s /3 6/6 8/8 .43/.44
71 t2 1 " ' - * -11/- 7.1/ 3.9/--
72 1 1. I i,) I.l/).1 29/29 18/18 2.07/2.02
73 118111 18/18 20/20 2/23 3.36/3.37
71 11051 I .13/ * 61/--- 97/ 27.14/-
7S IIJ1 (II' XA(i)N) 24/32 ,15/49 57/87 6.78/q 36
7f fIl , 1 11/10 13/11 25/29 3.23/3.26
77 I11t f;/6 9/9 24/15 8/69
78 115111 -I1/.19 6.1/75 4-1/.2 8.08/9.05
79 1S112 (I MI(AIL EQ.) 1!)/ 39/- 5.11 - 2.78i -
.o 1t8l :iI 1.1/16 19/23 38/36 3.12/3.41
81 1I I I 18/16 19/24 36/33 3.81/3.60
S2 HI 117 ((OLItlV E 2) 17/18 21/27 !6/39 6.75/a.3I
83 IISl 1 (I. I'I(ILEM) .1/I 6/6 20/20 1.35/1.40
,.I I1l 1 i(I,VILE 7) 12/17 16/19 .11/17 4.25/5.60

I), \t1o I [ 2811 " .1:37l. 2.6/- 75.46/ -

.I I.\lI[3) 2 I1l8s3 ,1/,I 6/6 14 .54/5.1
7 MI [i0 () /8 11/9 37/20 2.01/1.78

8 D1.\13 H ) I. 19/ 9 23/23 24/2.1 3.53/3.31
Aq I i H IC 1:3/13 15/15 20/23 3.10/3.20
00 l I\ t) 5 1(519; 17/18 21/224 30/31 2.90/3.01

91 I)E O f; -11sllt; g1;/1,13 !96/ 69 141/2.18 21.84/29.65
92 )AN1[H() 7 19/12 24/15 126/68 15.54/9.82

1)1 I-A ( ) SA 33/12 85/118 1 u 5,41) 7.52/9.17
'i 1)EM [3o 8- 29/29 69/71 88/73 6.51/6.45
9, I)ENI() 8H ' 25/27 60/68 89/65 6.19/(i.06
9t (O) ) F 18/17 19/18 53/51 ,468.12/4 56.10
97t (;[Dll LQ!I1[IBIIIM MODI). 5/6 6/7 37/26 6.22/6.10
98 WIA I ,'N ASI(;NMENT 96/73 98/76 2.1.1/170 120.78/11.1.93
!'..' S1' I 'IIloI (N 18/17 :34/30 (15/,12 13.67/11.73
o0 l , , PI (' I IO ON 26/29 .19/67 87/81 17.68/20.75

101 S]"litI ( "IIoV\N 23/19 41/31 54/51 16.30/13.85
102 5, T' ( l .lT \ AN . 121 -/48 -/91 - /19.4-1
13 S10il"([25006 .12/37 6,8/)62 1.17/85 92.44/80.99
101 S IIi I(U I1- 2 r4i0(; 20/28 32/36 178/95 357.83/260.79
105 S I [OI[25DAT 11/12 1!9/21 2,1122 2.4.75/27.11
106 SI 131 ('12.1)A'1 52/2 106/37 687/65 6,17.13/191.4-1
107 51'1[ (1:3;DA[ 2:3/20( 38/34 59/46 120.79/108.02
108 SI II l'('L3GI)AT 29/30 53/62 87/90 971.16/1021.87
109 S-1 1 '( "13:30 IO( 117/1I1 211/202 611613g91 8182.13/7159.0.3
110 S'T [Il ('}.l() 37.5/- - 79,1/- 35,15 - 7729.6,1/-
III 51IT (fW(.'Kwt) - ./98 /241 - /389.9 -- /8281.02
112 51131 (1'63060 6:3/115 150/316 (; 75 /3.107 25090.15/33228.12
113 S.I iI '(( G3h DAT 216/1;W 354/412 90.132060 12.591.61 / 1.12.1.5.1
III ,I IU.CE ;:3I)AT 52/72 86/1,15 0.19/2858 4 179;38-1/227,10.66

Failed t, .... h' w I prblenm.
Converd I., , different mininizr.
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Figure 1. Nonlinear iterations and function evaluations: NPSOL vs. Early termination
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lom tFigur,, I and 2 it can be noticed that the results obtained present a significant

lick uf correlation from one problem to the next; the comments offered earlier i i this section

iippl.v wloi tihe average behaviors are considered, rather than for each individual problem.

it ligture 1, the values for the numbers of nonlinear iterations and fun ct iotl evaluations are

clear ly clustered around zero, with relatively small deviations from the average. In contrast

to lhese result.". lhe tredominance of positive values for the number of QP iterations can

h, ,rasily appreciated in ligure 2, especially for those (larger) problems beyond problem 92.
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7.4. Fuirther work

WeConc lude tilie report with some comnmen ts onl those areas whecre fort hor improvemien t ill

the( allgorithli is desirable.

"Two of the aissumnptionis introduced in Chapter 2 were the nouisingularity of the .Jaco-

hian for thle active const rai nts at the solution, and tie( existence of a feasible egioti

for all Q P su bproblems, Many of the failures in the( solution of thle test problems Can

be att riuted to the corresponding slubproblemns lacking one of these properties (or

being close to violating t hen ). NPSO I, i ncluodes, rules to deal withL thlese;( di ffluio s

but they ale not guiaranteed to lbe able to cope with all possible situations, pa rticiu-

Ia rIv in t lie case of in feasible soubproblems. A thlird related issue that appeared several

timles in Olie Soloution of t he problem set, wvas the need for a dlisprop~ortionat e effort to

obtain feb;ti ibe points for thle Q P sutblprob~lems. fin sonic of thle problems thle wvork to

obtain it a ';1sible point wvas far greater thban the remain inig wvork needed to coiiipute a

satisfactorY search (directioun. For example, in problem number 11-4, SO(/ of the quite

('onsiderab Ie solo din-i timle was spent iii the feasibility phase by bo0th algorit Iimus.

These Ilst two issues are closely related. It canl be expecte-d that a procedure to

torminate t he feasibility phase early muay not only Yield further reduoctions in thli total

number of' QlP iterations needled to solve the problems, but at the sam- ' time may%

provide a \vav to (lea.1 withb infeasible Q P subproblems.

" Antot her open area, also related to the assu mpt iotns made in Chapter 2, is the thleoret -

ical studY of the relaxation of the strict completnentarity requirement. Some recent

wvorki on this topic by Bulrke [13ur89] indicates that it might still be p~ossible to identify

a satisfact o, active set at thle solution in a finite ntumber of iterations. Several ot her

associatedl issues are also open: for example, dletermination of the best strategy to

Compuite it L;Igrati ge muiltipIlier estimuate when the .1acobian is becoming progressi velv

more ill-ctidit ioied . anrd st udy of thle theoretical rate of convergence achievable b

the aig'oriltliii whIe; u stric(t corn plemeit a rity does not hiold(.

" Finally, a. more gtineral issue is identification of the( best strategy for the soliution of tithe

QlP stuIprolveun in the large-scale case. This report focused on active-set methods,

but recetit l there has been great interest in the use of interior- point met hods. in

which the inuequuality constraints dre rewritten in the formn of equalitY conist rainits and(
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simple borids, and a barrier function formulation is used to move the simple bounds

into tile objective function. These methods may become a promising alternative for

use within our franework (to solve the QP subproblems), as they seem able to avoid

the exponential complexity associated with determination of the correct active set.

lxplormliou of these alternatives offers a great number of possibilities for further

research iW: the quest f(er a satisfactory method to solve large-scale nonlinear programs.
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The problem considered in this dissertation is that of finding local minimizers for a function subject
to general nonlinear inequality constraints, when first and perhaps second derivatives are available.
The methods studied belong to the class of sequential quadratic programming (SQP) algorithms. In
particular, the methods are based on the SQP algorithm embodied in the code NPSOL, which was
developed at the Systems Optimization Laboratory, Stanford University.

The goal of the dissertation is to develop SQP algorithms that allow some flexibility in their design

Specifically. we are interested in introducing modifications that enable the algorithms to solve large-scale
problems efficiently. The following issues are considered in detail:

Instead of trying to obtain the search direction as a minimizer for the QP, the solution process
is terminated after a limited number of iterations Suitable termination criteria are defined that
ensure convergence for an algorithm that uses a quasi-Newton approximation for the full Hessian
Theorems concerning the rate of convergence are also given.

For many problems the reduced Hessian is considerably smaller than the full Hessian. Conse-
quently, there are considerable practical benefits to be gained by only requiring an approximation
to the reduced Hessian. Theorems are proved conce.iing the convergence and rate of conver-
gence for an algorithm that uses a quasi-Newton approximation for the reduced Hessian when early
termination of the QP subproblem is enforced.

The use of second derivatives, while having significant practical advantages, introduces new

difficulties, for example, the QP subproblems may be non-convex, and even a minimizer for the

subprob:crm is no longer guaranteed to yield a suitable search direction. It is shown how to construct
suitable search directions from approximate solutions to the QP subproblem. Also, theorems are
proved for the convergence and rate of convergence of these algorithms.

Finally, some numerical results, obtained from a modification of the code NPSOL, are presented.
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